Skip to main content

Advertisement

Log in

miR-9 Upregulation Integrates Post-ischemic Neuronal Survival and Regeneration In Vitro

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The irrefutable change in the expression of brain-enriched microRNAs (miRNAs) following ischemic stroke has promoted the development of radical miRNA-based therapeutics encompassing neuroprotection and neuronal restoration. Our previous report on the systems-level prediction of miR-9 in post-stroke-induced neurogenesis served as a premise to experimentally uncover the functional role of miR-9 in post-ischemic neuronal survival and regeneration. The oxygen-glucose deprivation (OGD) in SH-SY5Y cells significantly reduced miR-9 expression, while miR-9 mimic transfection enhanced post-ischemic neuronal cell viability. The next major objective involved the execution of a drug repositioning strategy to augment miR-9 expression via structure-based screening of Food and Drug Administration (FDA)-approved drugs that bind to Histone Deacetylase 4 (HDAC4), a known miR-9 target. Glucosamine emerged as the top hit and its binding potential to HDAC4 was verified by Molecular Dynamics (MD) Simulation, Drug Affinity Responsive Target Stability (DARTS) assay, and MALDI-TOF MS. It was intriguing that the glucosamine treatment 1-h post-OGD was associated with the increased miR-9 level as well as enhanced neuronal viability. miR-9 mimic or post-OGD glucosamine treatment significantly increased the cellular proliferation (BrdU assay), while the neurite outgrowth assay displayed elongated neurites. The enhanced BCL2 and VEGF parallel with the reduced NFκB1, TNF-α, IL-1β, and iNOS mRNA levels in miR-9 mimic or glucosamine-treated cells further substantiated their post-ischemic neuroprotective and regenerative efficacy. Hence, this study unleashes a potential therapeutic approach that integrates neuronal survival and regeneration via small-molecule-based regulation of miR-9 favoring long-term recovery against ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ATP:

Adenosine triphosphate

BCL2:

B-cell lymphoma 2

BrdU:

5-Bromo-2´-deoxyuridine

DARTS:

Drug affinity responsive target stability

DMEM:

Dulbecco’s modified Eagle’s medium

EBSS:

Earle’s balanced salt solution

FBS:

Fetal bovine serum

FDA:

Food and drug administration

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

HDAC4:

Histone deacetylase-4

IL-1β:

Interleukin-1β

iNOS:

Inducible nitric oxide synthase

LDH:

Lactate dehydrogenase

MALDI-TOF MS:

Matrix-assisted laser desorption/ionization - time-of-flight mass spectrometry

MD:

Molecular dynamics

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NFκB1:

Nuclear Factor Kappa B Subunit 1

OGD:

Oxygen-glucose deprivation

PBS:

Phosphate-buffered saline

PDB:

Protein data bank

PI:

Propidium iodide

qRT-PCR:

Quantitative real time-polymerase chain reaction

RMSD:

Root-mean-square deviation

RMSF:

Root-mean-square fluctuation

SDS:

Sodium dodecyl sulfate

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

SEM:

Standard error of the mean

TNF-α:

Tumor necrosis factor-α

VEGF:

Vascular endothelial growth factor

References

  • Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683

    Article  CAS  PubMed  Google Scholar 

  • Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, Tamassia N, Mantovani A, Cassatella MA, Locati M (2009) Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA 106:5282–5287

    Article  PubMed  Google Scholar 

  • Bolger TA, Yao TP (2005) Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci 25:9544–9553

    Article  CAS  PubMed  Google Scholar 

  • Bottomley MJ, Lo Surdo P, Di Giovine P, Cirillo A, Scarpelli R, Ferrigno F, Jones P, Neddermann P, De Francesco R, Steinkühler C, Gallinari P, Carfí A (2008) Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J Biol Chem 283:26694–26704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chami L, Checler F (2012) BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer’s disease. Mol Neurodegener 7:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang R, Algird A, Bau C, Rathbone MP, Jiang S (2008) Neuroprotective effects of guanosine on stroke models in vitro and in vivo. Neurosci Lett 431:101–105

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wang M, Yang H, Mao L, He Q, Jin H, Ye ZM, Luo XY, Xia YP, Hu B (2017) LncRNA TUG1 sponges microRNA-9 to promote neurons apoptosis by up-regulated Bcl2l11 under ischemia. Biochem Biophys Res Commun 485:167–173

    Article  CAS  PubMed  Google Scholar 

  • Coolen M, Katz S, Bally-Cuif L (2013) miR-9: a versatile regulator of neurogenesis. Front Cell Neurosci 7:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer SC (2018) Treatments to promote neural repair after stroke. J Stroke 20:57–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Davila JL, Goff LA, Ricupero CL, Camarillo C, Oni EN, Swerdel MR, Toro-Ramos AJ, Li J, Hart RP (2014) A positive feedback mechanism that regulates expression of miR-9 during neurogenesis. PLoS ONE 9:e94348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CK, Nampoothiri SS, Rajanikant GK (2018) Folic acid exerts post-ischemic neuroprotection in vitro through HIF-1α stabilization. Mol Neurobiol 55(11):8328

    Article  CAS  PubMed  Google Scholar 

  • Delaloy C, Liu L, Lee JA, Su H, Shen F, Yang GY, Young WL, Ivey KN, Gao FB (2010) MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell–derived neural progenitors. Cell stem cell 6:323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    Article  CAS  PubMed  Google Scholar 

  • Fayaz SM, Rajanikant GK (2014) Ensemble pharmacophore meets ensemble docking: a novel screening strategy for the identification of RIPK1 inhibitors. J Comput Aided Mol Des 28:779–794

    Article  CAS  PubMed  Google Scholar 

  • Fordel E, Thijs L, Martinet W, Schrijvers D, Moens L, Dewilde S (2007) Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions. Gene 398:114–122

    Article  CAS  PubMed  Google Scholar 

  • Fournier NM, Duman RS (2012) Role of vascular endothelial growth factor in adult hippocampal neurogenesis: implications for the pathophysiology and treatment of depression. Behav Brain Res 227:440–449

    Article  CAS  PubMed  Google Scholar 

  • Guglielmotto M, Aragno M, Autelli R, Giliberto L, Novo E, Colombatto S, Danni O, Parola M, Smith MA, Perry G, Tamagno E, Tabaton M (2009) The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1alpha. J Neurochem 108:1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q, Deiters A (2008) Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl 47:7482–7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harari OA, Liao JK (2010) NF-κB and innate immunity in ischemic stroke. Ann N Y Acad Sci 1207:32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan MR, Kim JH, Kim YJ, Kwon KJ, Shin CY, Kim HY, Han SH, Choi DH, Lee J (2013) Effect of HDAC inhibitors on neuroprotection and neurite outgrowth in primary rat cortical neurons following ischemic insult. Neurochem Res 38:1921–1934

    Article  CAS  PubMed  Google Scholar 

  • Hawkins M, Barzilai N, Liu R, Hu M, Chen W, Rossetti L (1997) Role of the glucosamine pathway in fat-induced insulin resistance. J Clin Invest 99:2173–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SY, Shin JH, Hwang JS, Kim SY, Shin JA, Oh ES, Oh S, Kim JB, Lee JK, Han IO (2010) Glucosamine exerts a neuroprotective effect via suppression of inflammation in rat brain ischemia/reperfusion injury. Glia 58:1881–1892

    Article  PubMed  Google Scholar 

  • Iwashita A, Muramatsu Y, Yamazaki T, Muramoto M, Kita Y, Yamazaki S, Mihara K, Moriguchi A, Matsuoka N (2007) Neuroprotective efficacy of the peroxisome proliferator-activated receptor delta-selective agonists in vitro and in vivo. J Pharmacol Exp Ther 320:1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Jämsä A, Hasslund K, Cowburn RF, Bäckström A, Vasänge M (2004) The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer’s disease-like tau phosphorylation. Biochem Biophys Res Commun 319:993–1000

    Article  CAS  PubMed  Google Scholar 

  • Jones SW, Watkins G, Le Good N, Roberts S, Murphy CL, Brockbank SM, Needham MR, Read SJ, Newham P (2009) The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage 17:464–472

    Article  CAS  PubMed  Google Scholar 

  • Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M (2017) Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. J Stroke 19:166–187

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim B, Leventhal PS, Saltiel AR, Feldman EL (1997) Insulin-like growth factor-I-mediated neurite outgrowth in vitro requires mitogen-activated protein kinase activation. J Biol Chem 272:21268–21273

    Article  CAS  PubMed  Google Scholar 

  • Krishna A, Biryukov M, Trefois C, Antony PM, Hussong R, Lin J, Heinäniemi M, Glusman G, Köglsberger S, Boyd O, van den Berg BH, Linke D, Huang D, Wang K, Hood L, Tholey A, Schneider R, Galas DJ, Balling R, May P (2014) Systems genomics evaluation of the SH-SY5Y neuroblastoma cell line as a model for Parkinson’s disease. BMC Genom 15:1154

    Article  CAS  Google Scholar 

  • Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 25:11693–11709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang M-F, Shi Y (2012) Dynamic roles of microRNAs in neurogenesis. Front Neurosci 6:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langley B, Brochier C, Rivieccio MA (2009) Targeting histone deacetylases as a multifaceted approach to treat the diverse outcomes of stroke. Stroke 40:2899–2905

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee S, Choi E, Ham O, Lee CY, Lee J, Seo HH, Cha MJ, Mun B, Lee Y, Yoon C, Hwang KC (2018) Small molecule-mediated up-regulation of microRNA targeting a key cell death modulator BNIP3 improves cardiac function following ischemic injury. Sci Rep 8:46973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litke C, Bading H, Mauceri D (2018) Histone deacetylase 4 shapes neuronal morphology via a mechanism involving regulation of expression of vascular endothelial growth factor D. J Biol Chem 293:8196–8207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L, Chen C, Zhang ZG (2011) MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS ONE 6:e23461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T, Kassis H, Zhang RL, Chen C, Xu J, Zhang ZG (2013a) MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem 288:12478–12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Chopp M, Zhang RL, Zhang ZG (2013b) MicroRNAs in cerebral ischemia-induced neurogenesis. J Neuropathol Exp Neurol 72:718–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nampoothiri SS, Rajanikant GK (2017) Decoding the ubiquitous role of microRNAs in neurogenesis. Mol Neurobiol 54:2003–2011

    Article  CAS  PubMed  Google Scholar 

  • Nampoothiri SS, Menon HV, Das D, Krishnamurthy RG (2016) ISCHEMIRs: finding a way through the obstructed cerebral arteries. Curr Drug Targets 17:800–810

    Article  CAS  PubMed  Google Scholar 

  • Nampoothiri SS, Fayaz SM, Rajanikant GK (2018) A novel five-node feed-forward loop unravels miRNA-Gene-TF regulatory relationships in ischemic stroke. Mol Neurobiol 55(11):8251

    Article  CAS  PubMed  Google Scholar 

  • Ouyang Y-B, Stary CM, Yang G-Y, Giffard R (2013) microRNAs: innovative targets for cerebral ischemia and stroke. Curr Drug Targets 14:90–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pai MY, Lomenick B, Hwang H, Schiestl R, McBride W, Loo JA, Huang J (2015) Drug Affinity Responsive Target Stability (DARTS) for small molecule target identification. Methods Mol Biol 1263:287–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67

    Article  CAS  PubMed  Google Scholar 

  • Qian D, Wei G, Xu C, He Z, Hua J, Li J, Hu Q, Lin S, Gong J, Meng H, Zhou B, Teng H, Song Z (2017) Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-κB1/p50 gene in rats. Sci Rep 7:581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radio NM, Mundy WR (2008) Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology 29:361–376

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Temple S (2009) Fine control: microRNA regulation of adult neurogenesis. Nat Neurosci 12:369–370

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Zhao X, Hsieh J, Wichterle H, Impey S, Banerjee S, Neveu P, Kosik KS (2010) microRNA regulation of neural stem cells and neurogenesis. J Neurosci 30:14931–14936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinoy S, Fayaz SM, Charles KD, Suvanish VK, Kapfhammer JP, Rajanikant GK (2017) Amikacin inhibits miR-497 maturation and exerts post-ischemic neuroprotection. Mol Neurobiol 54:3683–3694

    Article  CAS  PubMed  Google Scholar 

  • Traxinger RR, Marshall S (1991) Coordinated regulation of glutamine:-fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J Biol Chem 266:10148–10154

    CAS  PubMed  Google Scholar 

  • Trazzi S, Fuchs C, Viggiano R, De Franceschi M, Valli E, Jedynak P, Hansen FK, Perini G, Rimondini R, Kurz T, Bartesaghi R, Ciani E (2016) HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. Hum Mol Genet 25:3887–3907

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang W, Zuo Y, Ding M, Ke C, Yan R, Zhan H, Liu J, Wang J (2015) miR-9 promotes cell proliferation and inhibits apoptosis by targeting LASS2 in bladder cancer. Tumour Biol 36:9631–9640

    Article  CAS  PubMed  Google Scholar 

  • Wei N, Xiao L, Xue R, Zhang D, Zhou J, Ren H, Guo S, Xu J (2016) MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Mol Neurobiol 53:6809–6817

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M (2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36:D901–D906

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Li CH, Chan SL, Xu F, Feng L, Wang Y, Jiang JD, Sung JJ, Cheng CH, Chen Y (2014) A small-molecule modulator of the tumor-suppressor miR34a inhibits the growth of hepatocellular carcinoma. Cancer Res 74:6236–6247

    Article  CAS  PubMed  Google Scholar 

  • Xicoy H, Wieringa B, Martens GJ (2017) The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener 12:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Zhao Y, Zhou Y, Liu L, Liu Y, Wang D, Zhang S, Yang M (2017) MiR-9 regulates the expression of BACE1 in dementia induced by chronic brain hypoperfusion in rats. Cell Physiol Biochem 42:1213–1226

    Article  CAS  PubMed  Google Scholar 

  • Young DD, Connelly CM, Grohmann C, Deiters A (2010) Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 132:7976–7981

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Denton K, Liu L, Li XJ, Benashski S, McCullough L, Li J (2016) Nuclear translocation of histone deacetylase 4 induces neuronal death in stroke. Neurobiol Dis 91:182–193

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK (2003) Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem 85:1026–1036

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemka-Nalecz M, Zalewska T (2014) Neuroprotective effects of histone deacetylase inhibitors in brain ischemia. Acta Neurobiol Exp (Wars) 74:383–395

    Google Scholar 

Download references

Acknowledgements

This study was funded by (a) the Department of Biotechnology, Government of India “Bioinformatics Infrastructure Facility for Biology Teaching through Bioinformatics (BIFBTBI)” (Grant Number: BT/BI/25/001/2006 dated 25/03/2011) and (b) Kerala State Council for Science, Technology and Environment, Science Research Scheme (Grant Number: 018/SRSLS/2014/CSTE).

Author information

Authors and Affiliations

Authors

Contributions

SSN and RGK designed experiments; SSN performed experiments, analyzed data, wrote the manuscript; RGK revised the manuscript critically and approved the final version to be submitted.

Corresponding author

Correspondence to G. K. Rajanikant.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 584 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nampoothiri, S.S., Rajanikant, G.K. miR-9 Upregulation Integrates Post-ischemic Neuronal Survival and Regeneration In Vitro. Cell Mol Neurobiol 39, 223–240 (2019). https://doi.org/10.1007/s10571-018-0642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-018-0642-1

Keywords

Navigation