Skip to main content
Log in

Enhancing the Astrocytic Clearance of Extracellular α-Synuclein Aggregates by Ginkgolides Attenuates Neural Cell Injury

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The accumulation of aggregated forms of the α-Synuclein (α-Syn) is associated with the pathogenesis of Parkinson’s disease (PD), and the efficient clearance of aggregated α-Syn represents a potential approach in PD therapy. Astrocytes are the most numerous glia cells in the brain and play an essential role in supporting brain functions in PD state. In the present study, we demonstrated that cultured primary astrocytes engulfed and degraded extracellular aggregated recombinant human α-Syn. Meanwhile, we observed that the clearance of α-Syn by astrocytes was abolished by proteasome inhibitor MG132 and autophagy inhibitor 3-methyladenine (3MA). We further showed that intracellular α-Syn was reduced after ginkgolide B (GB) and bilobalide (BB) treatment, and the decrease was reversed by MG132 and 3MA. More importantly, GB and BB reduced indirect neurotoxicity to neurons induced by α-Syn-stimulated astrocytic conditioned medium. Together, we firstly find that astrocytes can engulf and degrade α-Syn aggregates via the proteasome and autophagy pathways, and further show that GB and BB enhance astrocytic clearance of α-Syn, which gives us an insight into the novel therapy for PD in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-Syn:

α-Synuclein

ALP:

Autophagy–lysosome pathways

BB:

Bilobalide

BCA:

Bicinchoninic acid

CM:

Conditioned medium

DAPI:

4,6-Linked amidine-2-phenylindole

DLB:

Dementia with LBs

DMSO:

Dimethyl sulfoxide

DTT:

DL-Dithiothreitol

GB:

Ginkgolide B

GBE:

Ginkgo biloba extract

GFAP:

Glial fibrillary acidic protein

LBs:

Lewy bodies

LC3:

Microtubule-associated protein 1A/1B-light chain 3

LDH:

Lactate dehydrogenase

LNs:

Lewy neuritis

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

PBS:

Phosphate buffered saline

PD:

Parkinson’s disease

SNpc:

Substantia Nigra pars compacta

ThT:

Thioflavin T

3MA:

3-Methyladenine

UPS:

Ubiquitin proteasome system

References

  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casarejos MJ, Solano RM, Gomez A, Perucho J, de Yebenes JG, Mena MA (2011) The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. Neurochem Int 58:512–520

    CAS  PubMed  Google Scholar 

  • Choi MG, Kim MJ, Kim DG, Yu R, Jang YN, Oh WJ (2018) Sequestration of synaptic proteins by alpha-synuclein aggregates leading to neurotoxicity is inhibited by small peptide. PLoS ONE 13:e195339

    Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    CAS  PubMed  Google Scholar 

  • Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Matteo V, Esposito E (2003) Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr Drug Targets CNS Neurol Disord 2:95–107

    PubMed  Google Scholar 

  • Ebrahimi-Fakhari D, Wahlster L, McLean PJ (2012) Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol 124:153–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Agnaf OM, Salem SA, Paleologou KE, Curran MD, Gibson MJ, Court JA et al (2006) Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J 20:419–425

    CAS  PubMed  Google Scholar 

  • Erustes AG, Stefani FY, Terashima JY, Stilhano RS, Monteforte PT, Da SPG et al (2018) Overexpression of alpha-synuclein in an astrocyte cell line promotes autophagy inhibition and apoptosis. J Neurosci Res 96:160–171

    CAS  PubMed  Google Scholar 

  • Foulds PG, Mitchell JD, Parker A, Turner R, Green G, Diggle P et al (2011) Phosphorylated alpha-synuclein can be detected in blood plasma and is potentially a useful biomarker for Parkinson’s disease. FASEB J 25:4127–4137

    CAS  PubMed  Google Scholar 

  • Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS (2011) Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect 119:807–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo RZ, Liu XG, Gao W, Dong X, Fanali S, Li P et al (2015) A strategy for screening antioxidants in Ginkgo biloba extract by comprehensive two-dimensional ultra high performance liquid chromatography. J Chromatogr A 1422:147–154

    CAS  PubMed  Google Scholar 

  • Hirata BK, Banin RM, Dornellas AP, de Andrade IS, Zemdegs JC, Caperuto LC et al (2015) Ginkgo biloba extract improves insulin signaling and attenuates inflammation in retroperitoneal adipose tissue depot of obese rats. Mediat Inflamm 2015:419106

    Google Scholar 

  • Hoenerhoff MJ, Pandiri AR, Snyder SA, Hong HH, Ton TV, Peddada S et al (2013) Hepatocellular carcinomas in B6C3F1 mice treated with Ginkgo biloba extract for two years differ from spontaneous liver tumors in cancer gene mutations and genomic pathways. Toxicol Pathol 41:826–841

    PubMed  Google Scholar 

  • Hua J, Yin N, Yang B, Zhang J, Ding J, Fan Y et al (2017) Ginkgolide B and bilobalide ameliorate neural cell apoptosis in alpha-synuclein aggregates. Biomed Pharmacother 96:792–797

    CAS  PubMed  Google Scholar 

  • Iwata A, Maruyama M, Akagi T, Hashikawa T, Kanazawa I, Tsuji S et al (2003) Alpha-synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum Mol Genet 12:2625–2635

    CAS  PubMed  Google Scholar 

  • Jang A, Lee HJ, Suk JE, Jung JW, Kim KP, Lee SJ (2010) Non-classical exocytosis of alpha-synuclein is sensitive to folding states and promoted under stress conditions. J Neurochem 113:1263–1274

    CAS  PubMed  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912

    CAS  PubMed  Google Scholar 

  • Kim C, Lee SJ (2008) Controlling the mass action of alpha-synuclein in Parkinson’s disease. J Neurochem 107:303–316

    CAS  PubMed  Google Scholar 

  • Kim C, Ho DH, Suk JE, You S, Michael S, Kang J et al (2013) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562

    PubMed  Google Scholar 

  • Kim C, Rockenstein E, Spencer B, Kim HK, Adame A, Trejo M et al (2015) Antagonizing neuronal toll-like receptor 2 prevents synucleinopathy by activating autophagy. Cell Rep 13:771–782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Suk JE, Bae EJ, Lee JH, Paik SR, Lee SJ (2008a) Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol 40:1835–1849

    CAS  PubMed  Google Scholar 

  • Lee HJ, Suk JE, Bae EJ, Lee SJ (2008b) Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem Biophys Res Commun 372:423–428

    CAS  PubMed  Google Scholar 

  • Lee HJ, Bae EJ, Lee SJ (2014) Extracellular alpha-synuclein-a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10:92–98

    CAS  PubMed  Google Scholar 

  • Lin Y, Wang R, Wang X, He RR, Wu YM (2008) Effects of ginkgolide B on neuronal discharges in paraventricular nucleus of rat hypothalamic slices. Neurosci Bull 24:345–350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma KL, Song LK, Yuan YH, Zhang Y, Han N, Gao K et al (2014) The nuclear accumulation of alpha-synuclein is mediated by importin alpha and promotes neurotoxicity by accelerating the cell cycle. Neuropharmacology 82:132–142

    CAS  PubMed  Google Scholar 

  • Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA (2010) Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 285:13621–13629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y et al (2016) Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353:aah3374

    CAS  PubMed  PubMed Central  Google Scholar 

  • McNaught KS, Mytilineou C, Jnobaptiste R, Yabut J, Shashidharan P, Jennert P et al (2002) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81:301–306

    CAS  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    CAS  PubMed  Google Scholar 

  • Mozet C, Martin R, Welt K, Fitzl G (2009) Cardioprotective effect of EGb 761 on myocardial ultrastructure of young and old rat heart and antioxidant status during acute hypoxia. Aging Clin Exp Res 21:14–21

    CAS  PubMed  Google Scholar 

  • Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D et al (2017) Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy. Mov Disord 32:1264–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oueslati A, Schneider BL, Aebischer P, Lashuel HA (2013) Polo-like kinase 2 regulates selective autophagic alpha-synuclein clearance and suppresses its toxicity in vivo. Proc Natl Acad Sci USA 110:E3945–E3954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JM, Huang S, Wu TT, Foster NR, Sinicrope FA (2013) Prognostic impact of Beclin 1, p62/sequestosome 1 and LC3 protein expression in colon carcinomas from patients receiving 5-fluorouracil as adjuvant chemotherapy. Cancer Biol Ther 14:100–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plotegher N, Civiero L (2012) Neuronal autophagy, alpha-synuclein clearance, and LRRK2 regulation: a lost equilibrium in parkinsonian brain. J Neurosci 32:14851–14853

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    CAS  PubMed  Google Scholar 

  • Sacino AN, Brooks MM, Chakrabarty P, Saha K, Khoshbouei H, Golde TE et al (2017) Proteolysis of alpha-synuclein fibrils in the lysosomal pathway limits induction of inclusion pathology. J Neurochem 140:662–678

    CAS  PubMed  Google Scholar 

  • Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M et al (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi C, Wu F, Yew DT, Xu J, Zhu Y (2010) Bilobalide prevents apoptosis through activation of the PI3K/Akt pathway in SH-SY5Y cells. Apoptosis 15:715–727

    CAS  PubMed  Google Scholar 

  • Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95:6469–6473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyson T, Senchuk M, Cooper JF, George S, Van Raamsdonk JM, Brundin P (2017) Novel animal model defines genetic contributions for neuron-to-neuron transfer of alpha-synuclein. Sci Rep 7:7506

    PubMed  PubMed Central  Google Scholar 

  • Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L (2011) Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol 10:1015–1025

    CAS  PubMed  Google Scholar 

  • Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    CAS  PubMed  Google Scholar 

  • Xiao Q, Wang C, Li J, Hou Q, Li J, Ma J et al (2010) Ginkgolide B protects hippocampal neurons from apoptosis induced by beta-amyloid 25–35 partly via up-regulation of brain-derived neurotrophic factor. Eur J Pharmacol 647:48–54

    CAS  PubMed  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109

    CAS  PubMed  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552

    CAS  PubMed  Google Scholar 

  • Yoshitake T, Yoshitake S, Kehr J (2010) The Ginkgo biloba extract EGb 761(R) and its main constituent flavonoids and ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. Br J Pharmacol 159:659–668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng XN, Sun XL, Gao L, Fan Y, Ding JH, Hu G (2007) Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Mol Cell Neurosci 34:34–39

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Prof. Zhuohua Zhang for providing the plasmid pcDNA3.1(−)-α-Syn. This research was supported by the grants from the National Natural Science Foundation of China (Grant Nos. 81673408 and 81703485).

Author information

Authors and Affiliations

Authors

Contributions

YF and GH conceived the study and analyzed the data. JH and NY constructed lentiviral vectors and involved in manuscript preparation. JH and SX designed and performed animal experiment. NY and QC performed biochemical analysis. TT and JZ performed immunohistochemical and immunolabeling analysis. JH and JD performed in vitro cell culture experiments. NY and JD performed in vitro α-synuclein propagation assay. JH and YF wrote the manuscript. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Yi Fan or Gang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical Approval

All study protocols were approved by the Institutional Animal Care and Use Committee of Nanjing Medical University (IACUC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, J., Yin, N., Xu, S. et al. Enhancing the Astrocytic Clearance of Extracellular α-Synuclein Aggregates by Ginkgolides Attenuates Neural Cell Injury. Cell Mol Neurobiol 39, 1017–1028 (2019). https://doi.org/10.1007/s10571-019-00696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-019-00696-2

Keywords

Navigation