Skip to main content
Log in

Mitochondrial Dysfunction and Redox Homeostasis Impairment as Pathomechanisms of Brain Damage in Ethylmalonic Encephalopathy: Insights from Animal and Human Studies

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ethylmalonic encephalopathy (EE) is a severe intoxication disorder caused by mutations in the ETHE1 gene that encodes a mitochondrial sulfur dioxygenase involved in the catabolism of hydrogen sulfide. It is biochemically characterized by tissue accumulation of hydrogen sulfide and its by-product thiosulfate, as well as of ethylmalonic acid due to hydrogen sulfide-induced inhibition of short-chain acyl-CoA dehydrogenase. Patients usually present with early onset severe brain damage associated to encephalopathy, chronic hemorrhagic diarrhea and vascular lesions with petechial purpura and orthostatic acrocyanosis whose pathophysiology is poorly known. Current treatment aims to reduce hydrogen sulfide accumulation, but does not significantly prevent encephalopathy and most fatalities. In this review, we will summarize the present knowledge obtained from human and animal studies showing that disruption of mitochondrial and redox homeostasis may represent relevant pathomechanisms of tissue damage in EE. Mounting evidence show that hydrogen sulfide and ethylmalonic acid markedly disturb critical mitochondrial functions and induce oxidative stress. Novel therapeutic strategies using promising candidate drugs for this devastating disease are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MG, MW and GL worked in the conception, writing and revision of the article.

Corresponding author

Correspondence to Guilhian Leipnitz.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grings, M., Wajner, M. & Leipnitz, G. Mitochondrial Dysfunction and Redox Homeostasis Impairment as Pathomechanisms of Brain Damage in Ethylmalonic Encephalopathy: Insights from Animal and Human Studies. Cell Mol Neurobiol 42, 565–575 (2022). https://doi.org/10.1007/s10571-020-00976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00976-2

Keywords

Navigation