Skip to main content

Advertisement

Log in

The Gut-Brain Axis: Two Ways Signaling in Parkinson’s Disease

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a chronic, progressive and second most prevalent neurological disorder affecting the motor system. Cardinal motor impairment and α-synucleinopathy are the characteristic features of PD. Recently, it has been identified that the gut-brain axis is substantially regulated by the gut microbiome (GM) through an immunological, neuroendocrine, and neural mechanism. However, disturbance in the gut-microbiome-brain axis in PD might proceed to gastrointestinal manifestations intermittently leading to the motor system and the PD pathogenesis itself. The gut microbial toxins may induce the production of α-synuclein (α-syn) aggregates in the enteric nervous system (ENS), which may proliferate and propagate in a prion-like-manner through the vagus nerve to the central nervous system (CNS); supporting the hypothesis that, GM might play a pivotal role in PD pathogenesis. Overstimulated innate immune system due to intestinal bacterial overgrowth or gut dysbiosis and the enhanced intestinal permeability may persuade systemic inflammation, while the activation of enteric glial cells and enteric neurons may contribute to α-synucleinopathy. Gut microbiota can bear a significant impact on neurological outcomes such as learning, memory and cognition. In this review paper, we summarize how the alterations in gut microbiota and ENS inflammation are associated with PD pathogenesis. The evidence supporting the causative role played by gut-associated dysbiosis and microbial byproducts, in the onset of PD is also discussed. We have highlighted the landmark discoveries in the field of PD particularly focusing on the gut-brain axis. A better comprehension of the interaction between the gut-brain axis, gut microbiota, and PD can usher in novel therapeutic and diagnostic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews ZB, Erion D, Beiler R (2009) Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism. J Neurosci 29:14057–14065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Paslier DL, Yamada T, Mende DR et al (2011) Addendum: enterotypes of the human gut microbiome. Nature 473:174–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25(3):397–407

    CAS  PubMed  Google Scholar 

  • Barichella M, Severgnini M, Cilia R, Cassani E, Bolliri C, Caronni S, Pinelli G (2019) Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord 34(3):396–405

    PubMed  Google Scholar 

  • Barrenschee M, Zorenkov D, Böttner M, Lange C, Cossais F, Scharf AB, Wedel T (2017) Distinct pattern of enteric phospho-alpha-synuclein aggregates and gene expression profiles in patients with Parkinson’s disease. Acta Neuropathologica Commun 5(1):1–14

    Google Scholar 

  • Bedarf JR, Hildebrand F, Coelho LP et al (2017) “Functional implications of microbial and viral gut metagenome changes in early stage L-dopa-naïve Parkinson’s disease patients. Genome Med 9(1):39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berer K, Krishnamoorthy G (2012) Commensal gut flora and brain autoimmunity: a love or hate affair? Acta Neuropathol 123(5):639–651

    CAS  PubMed  Google Scholar 

  • Bested AC, Logan AC, Selhub EM (2013) Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part I—autointoxication revisited. Gut Pathog 5:5

    PubMed  PubMed Central  Google Scholar 

  • Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69:11–20

    PubMed  Google Scholar 

  • Bialecka M, Kurzawski M, Klodowska-Duda G, Opala G, Juzwiak S, Kurzawski G et al (2007) CARD15 variants in patients with sporadic Parkinson’s disease. Neurosci Res 57:473–6

    CAS  PubMed  Google Scholar 

  • Bogunovic M, Davé SH, Tilstra JS, Chang DT, Harpaz N, Xiong H, Plevy SE (2007) Enteroendocrine cells express functional Toll-like receptors. Am J Physiol-Gastrointest Liver Physiol 292(6):G1770–G1783

    CAS  PubMed  Google Scholar 

  • Böttner M, Zorenkov D, Hellwig I, Barrenschee M, Harde J, Fricke T, Arlt A (2012) Expression pattern and localization of alpha-synuclein in the human enteric nervous system. Neurobiol Dis 48(3):474–480

    PubMed  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, De Vos RA, Steur ENJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    PubMed  Google Scholar 

  • Burgueño JF, Abreu MT (2020) Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/s41575-019-0261-4

    Article  PubMed  Google Scholar 

  • Çamci G, Oguz S (2016) Association between Parkinson’s disease and Helicobacter pylori. J Clin Neurol 12:147–150

    PubMed  PubMed Central  Google Scholar 

  • Caputi V, Giron MC (2018) Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int J Mol Sci 19(6):1689

    PubMed Central  Google Scholar 

  • Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203

    PubMed  PubMed Central  Google Scholar 

  • Carolina P, Matteo F, Rocchina C, Erika T, Fabio B, Giovanna L et al (2016) Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. J Neuroinflamm 13:1–13

    Google Scholar 

  • Cassani E, Privitera G, Pezzoli G et al (2011) Use of probiotics for the treatment of constipation in Parkinson’s disease patients. Minerva Gastroenterol Dietol 57(2):117–121

    CAS  PubMed  Google Scholar 

  • Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E, Roberts AM, Son F (2016) Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci Rep 6(1):1–10

    Google Scholar 

  • Chen QQ, Haikal C, Li W, Li JY (2019) Gut inflammation in association with pathogenesis of Parkinson’s disease. Front Mol Neurosci 12:218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clairembault T, Kamphuis W, Leclair-Visonneau L, Rolli-Derkinderen M, Coron E, Neunlist M et al (2014) Enteric GFAP expression and phosphorylation in Parkinson’s disease. J Neurochem 130:805–815

    CAS  PubMed  Google Scholar 

  • Clairembault T, Leclair-Visonneau L, Coron E, Bourreille A, Le Dily S, Vavasseur F et al (2015) Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun 3:12

    PubMed  PubMed Central  Google Scholar 

  • Coimbra CG, Junqueira VB (2003) High doses of riboflavin and the elimination of dietary red meat promote the recovery of some motor functions in Parkinson’s disease patients. Braz J Med Biol Res 36(10):1409–1417

    CAS  PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712

    CAS  PubMed  Google Scholar 

  • Darby TM, Owens JA, Saeedi BJ, Luo L, Matthews JD, Robinson BS, Naudin CR, Jones RM (2019) Lactococcuslactis subsp. cremoris Is an efficacious beneficial bacterium that limits tissue injury in the intestine. Iscience 12:356–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1–2):84–96

    PubMed  Google Scholar 

  • Derkinderen P, Shannon KM, Brundin P (2014) Gut feelings about smoking and coffee in Parkinson’s disease. Mov Disord 29:976–979

    PubMed  PubMed Central  Google Scholar 

  • Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48

    CAS  PubMed  Google Scholar 

  • Dinan, T. G., & Cryan, J. F. (2017). Gut feelings on Parkinson’s and depression. In Cerebrum: the Dana forum on brain science (Vol. 2017). Dana Foundation.

  • Dodiya HB, Forsyth CB, Voigt RM et al (2018) Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease. Neurobiol Dis 135:104352

    PubMed  Google Scholar 

  • Eisenhofer G, Åneman A, Friberg P, Hooper D, Fåndriks L, Lonroth H et al (1997) Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 82:3864–3871

    CAS  PubMed  Google Scholar 

  • Elfil M, Kamel S, Kandil M, Koo BB, Schaefer SM (2020) Implications of the gut microbiome in Parkinson’s Disease. Mov Disord 35:921–933

    CAS  PubMed  Google Scholar 

  • Engen PA, Dodiya HB, Naqib A, Forsyth CB, Green SJ, Voigt RM, Keshavarzian A (2017) The potential role of gut-derived inflammation in multiple system atrophy. J Parkinson’s Dis 7(2):331–346

    CAS  Google Scholar 

  • Fasano A, Bove F, Gabrielli M, Petracca M, Zocco MA, Cbc ER et al (2013) The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 28:1241–1249

    CAS  PubMed  Google Scholar 

  • Feher J (2017) 8.3—Intestinal and colonic chemoreception and motility.

  • Fitzgerald E, Murphy S, Martinson HA (2019) Alpha-synuclein pathology and the role of the microbiota in Parkinson’s disease. Front Neurosci 13:369

    PubMed  PubMed Central  Google Scholar 

  • Forsyth CB, Shannon KM, Kordower JH et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6(12):e28032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S (2017) The evolution of the host microbiome as an ecosystem on a leash. Nature 548(7665):43–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freestone P (2013) Communication between bacteria and their hosts. Scientifica 2013:1–15

    Google Scholar 

  • Friedland RP (2015) Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis 45:349–362

    CAS  PubMed  Google Scholar 

  • Friedland RP, Chapman MR (2017) The role of microbial amyloid in neurodegeneration. PLoS Pathog 13(12):e1006654

    PubMed  PubMed Central  Google Scholar 

  • Galan JE, Collmer A (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328

    CAS  PubMed  Google Scholar 

  • Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS, Bailey MT (2014) Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol 14(1):189

    PubMed  PubMed Central  Google Scholar 

  • Ganapathy V, Thangaraju M, Prasad PD, Martin PM, Singh N (2013) Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol 13:869–874

    CAS  PubMed  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray MT, Munoz DG, Gray DA, Schlossmacher MG, Woulfe JM (2014) Alpha-synuclein in the appendiceal mucosa of neurologically intact subjects. Mov Disord 29(8):991–998

    CAS  PubMed  Google Scholar 

  • Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K et al (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS ONE 10:e0142164

    PubMed  PubMed Central  Google Scholar 

  • Heintz-Buschart A, Pandey U, Wicke T et al (2018a) The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 33(1):88–98

    CAS  PubMed  Google Scholar 

  • Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E, Wilmes P (2018b) The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 33(1):88–98

    CAS  PubMed  Google Scholar 

  • Hill-Burns EM, Debelius JW, Morton JT et al (2017a) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD et al (2017b) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32:739–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD, Peddada SD, Factor SA, Molho E, Zabetian CP, Knight R (2017c) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman BU, Lumpkin EA (2018) A gut feeling. Science 361:1203–1204

    CAS  PubMed  Google Scholar 

  • Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Björklund T, Li JY (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128(6):805–820

    PubMed  Google Scholar 

  • Hopfner F, Künstner A, Müller SH et al (2017) Gut microbiota in Parkinson disease in a northern German cohort. Brain Res 1667:41–45

    CAS  PubMed  Google Scholar 

  • Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis 3:3. https://doi.org/10.1038/s41531-016-0002-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Houser MC, Chang J, Factor SA, Molho ES, Zabetian CP, Hillburns EM et al (1997) Stool immune profiles evince gastrointestinal inflammation in Parkinson’s disease. Neurobiol Dis 30:125–143

    Google Scholar 

  • Houser MC, Chang J, Factor SA, Molho ES, Zabetian CP, Hill-Burns EM et al (2018) Stool immune profiles evince gastrointestinal inflammation in Parkinson’s disease. Mov Disord 33:793–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Patterson PH (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hui KY, Fernandez-Hernandez H, Hu J, Schaffner A, Pankratz N, Hsu NY et al (2018) Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci Transl Med 10:eaai7795

    PubMed  PubMed Central  Google Scholar 

  • Ilie OD, Ciobica A, McKenna J, Doroftei B, Mavroudis I (2020) Minireview on the relations between gut microflora and Parkinson’s disease: further biochemical (oxidative stress), inflammatory, and neurological particularities. Oxid Med Cell Longev 2020:1–15

    Google Scholar 

  • Johnson KVA, Foster KR (2018) Why does the microbiome affect behaviour? Nat Rev Microbiol 16(10):647–655

    CAS  PubMed  Google Scholar 

  • Kamada N, Seo SU, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335

    CAS  PubMed  Google Scholar 

  • Kelly LP, Carvey PM, Keshavarzian A, Shannon KM, Shaikh M, Bakay RA et al (2014) Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov Disord 29:999–1009

    CAS  PubMed  Google Scholar 

  • Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG (2017) Cross talk: the microbiota and neurodevelopmental disorders. Front Neurosci 11:490

    PubMed  PubMed Central  Google Scholar 

  • Keshavarzian A, Green SJ, Engen PA et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360

    CAS  PubMed  Google Scholar 

  • Klann E, Tagliamonte MS, Ukhanova M, Mai V, Vedam-Mai V (2020) Gut microbiota dynamics in Parkinsonian mice. ACS Chem Neurosci 11(20):3267–3276

    CAS  PubMed  Google Scholar 

  • König J, Mall JPM, Rangel I, Edebol H, Brummer RJ (2015) The role of the gut microbiota in brain function. In: Venama K, Carmo PA (eds) Probiotics and prebiotics: current research and future trends. Caister Academic Press, Norfolk, pp 381–389

    Google Scholar 

  • Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body–like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506

    CAS  PubMed  Google Scholar 

  • Latorre R, Sternini C, De Giorgio R, Greenwood-Van Meerveld B (2016) Enteroendocrine cells: a review of their role in brain–gut communication. Neurogastroenterol Motil 28(5):620–630

    CAS  PubMed  Google Scholar 

  • Levy M, Kolodziejczyk AA, Thaiss CA, Elinav EJNRI (2017) Dysbiosis and the immune system. Nat Rev Immunol 17:219–232

    CAS  PubMed  Google Scholar 

  • Li W, Wu X, Hu X, Wang T, Liang S, Duan Y, Jin F, Qin B (2017a) Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 60(11):1223–1233

    PubMed  Google Scholar 

  • Li W, Wu X, Hu X et al (2017b) Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 60(11):1223–1233

    PubMed  Google Scholar 

  • Li C, Cui L, Yang Y, Miao J, Zhao X, Zhang J, Zhang Y (2019) Gut microbiota differs between Parkinson’s disease patients and healthy controls in northeast China. Front Mol Neurosci 12:171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liddle RA (2019) Neuropods. Cell Mol Gastroenterol Hepatol 7(4):739–747

    PubMed  PubMed Central  Google Scholar 

  • Lin A, Zheng W, He Y et al (2018a) Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord 53:82–88

    PubMed  Google Scholar 

  • Lin A, Zheng W, He Y, Tang W, Wei X, He R, Xie H (2018b) Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord 53:82–88

    PubMed  Google Scholar 

  • Lionnet A, Leclair-Visonneau L, Neunlist M, Murayama S, Takao M, Adler CH, Derkinderen P, Beach TG (2018) Does Parkinson’s disease start in the gut? Acta Neuropathol 135(1):1–12

    PubMed  Google Scholar 

  • Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A et al (2015) Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 47:979–986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A, Wirdefeldt K (2017a) Vagotomy and Parkinson disease: a Swedish register–based matched-cohort study. Neurology 88(21):1996–2002

    PubMed  PubMed Central  Google Scholar 

  • Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Xia H (2017b) Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 23(7):859

    CAS  PubMed  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD et al (2016) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341

    Google Scholar 

  • Manrique P, Dills M, Young MJ (2017) The human gut phage community and its implications for health and disease. Viruses 9(6):141

    PubMed Central  Google Scholar 

  • Marras C, Beck JC, Bower JH, Roberts E, Ritz B, Ross GW, Tanner CM (2018) Prevalence of Parkinson’s disease across North America. NPJ Parkinson’s Dis 4(1):1–7

    Google Scholar 

  • Martin CR, Osadchiy V, Kalani A, Mayer EA (2018) The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol 6(2):133–148

    PubMed  PubMed Central  Google Scholar 

  • Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12:5–9

    CAS  PubMed  Google Scholar 

  • Mayer EA, Savidge T, Shulman RJ (2014) Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146:1500–1512

    CAS  PubMed  Google Scholar 

  • Mazzoli R, Pessione E (2016) The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol 7:1934

    PubMed  PubMed Central  Google Scholar 

  • McNaught KSP, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin–proteasome system in Parkinson’s disease. Nat Rev Neurosci 2(8):589–594

    CAS  PubMed  Google Scholar 

  • Mertsalmi TH, Aho VT, Pereira PA, Paulin L, Pekkonen E, Auvinen P, Scheperjans F (2017) More than constipation–bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur J Neurol 24(11):1375–1383

    CAS  PubMed  Google Scholar 

  • Minato T, Maeda T, Fujisawa Y, Tsuji H, Nomoto K, Ohno K et al (2017) Progression of Parkinson’s disease is associated with gut dysbiosis: two-year follow-up study. PLoS ONE 12:e0187307

    PubMed  PubMed Central  Google Scholar 

  • Miranda-Morales E, Meier K, Sandoval-Carrillo A, Salas-Pacheco J, Vázquez-Cárdenas P, Arias-Carrión O (2017) Implications of DNA methylation in Parkinson’s disease. Front Mol Neurosci 10:225

    PubMed  PubMed Central  Google Scholar 

  • Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, PuseyPeetersHahnOchman AEMBHH (2016) Cospeciation of gut microbiota with hominids. Science 353(6297):380–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moro T, Rasmussen H, Hamaker B (2019) Potential of prebiotic butyrogenic fibers in Parkinson’s disease. Front Neurol 10:663

    Google Scholar 

  • Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Gendelman HE (2006) Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6(5):261–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Biswas A, Das SK (2016) Gut dysfunction in Parkinson’s disease. World J Gastroenterol 22:5742–5752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulak A, Bonaz B (2015) Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 21(37):10609–10620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nair AT, Ramachandran V, Joghee NM, Antony S, Ramalingam G (2018) Gut microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: a critical review. J Neurogastroenterol Motil 24(1):30

    PubMed  PubMed Central  Google Scholar 

  • Noble EE, Hsu TM, Kanoski SE (2017) Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment. Front Behav Neurosci 11:9

    PubMed  PubMed Central  Google Scholar 

  • Pan-Montojo F, Anichtchik O, Dening Y et al (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS ONE 5(1):e8762

    PubMed  PubMed Central  Google Scholar 

  • Perez-Pardo P, Kliest T, Dodiya HB, Broersen LM, Garssen J, Keshavarzian A, Kraneveld AD (2017) The gut-brain axis in Parkinson’s disease: possibilities for food-based therapies. Eur J Pharmacol 817:86–95

    CAS  PubMed  Google Scholar 

  • Perez-Pardo P, Dodiya HB, Engen PA et al (2018) Gut bacterial composition in a mouse model of Parkinson’s disease. Benef Microb 9(5):799–814

    CAS  Google Scholar 

  • Perez-Pardo P, Dodiya HB, Engen PA et al (2019) Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 68(5):829–843

    CAS  PubMed  Google Scholar 

  • Qian Y, Yang X, Xu S et al (2018) Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease. Brain Behav Immun 70:194–202

    PubMed  Google Scholar 

  • Quigley EM, Quera R (2006) Small intestinal bacterial overgrowth: roles of antibiotics, prebiotics, and probiotics. Gastroenterology 130:S78-90

    CAS  PubMed  Google Scholar 

  • Recasens A, Dehay B, Bové J, Carballo-Carbajal I, Dovero S, Pérez-Villalba A, Fernagut PO, Blesa J, Parent A, Perier C, Fariñas I (2014) Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75(3):351–362

    CAS  PubMed  Google Scholar 

  • Rekdal VM, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP (2019) Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364(6445):6323

    Google Scholar 

  • Rietdijk CD, Perez-Pardo P, Garssen J, van Wezel RJ, Kraneveld AD (2017) Exploring Braak’s hypothesis of Parkinson’s disease. Front Neurol 8:37

    PubMed  PubMed Central  Google Scholar 

  • Sachdev AH, Pimentel M (2013) Gastrointestinal bacterial overgrowth: pathogenesis and clinical significance. Ther Adv Chronic Dis 4(5):223–231

    PubMed  PubMed Central  Google Scholar 

  • Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469–80.e12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos SF, de Oliveira HL, Yamada ES, Neves BC, Pereira A (2019) The gut and Parkinson’s disease–a bidirectional pathway. Front Neurol 10:574

    PubMed  PubMed Central  Google Scholar 

  • Scheperjans F (2018) The prodromal microbiome. Mov Disord 33(1):5–7

    PubMed  Google Scholar 

  • Scheperjans F, Aho V, Pereira PA et al (2015a) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358

    PubMed  Google Scholar 

  • Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E et al (2015b) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358

    PubMed  Google Scholar 

  • Schwartz K, Boles BR (2013) Microbial amyloids—functions and interactions within the host. Curr Opin Microbiol 16:93–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L (2020) Gut, oral and nasal microbiota and Parkinson’s disease. Microb Cell Fact 19(1):1–7

    Google Scholar 

  • Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H et al (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MP, Fletcher-Turner A, Yurek DM, Cass WA (2006) Calcitriol protection against dopamine loss induced by intracerebroventricular administration of 6-hydroxydopamine. Neurochem Res 31(4):533–539

    CAS  PubMed  Google Scholar 

  • Soto C, Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21(10):1332–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner JA, Quansah E, Brundin P (2018) The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res 373(1):161–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stolp HB, Dziegielewska KM, Ek CJ, Potter AM, Saunders NR (2005) Long-term changes in blood-brain barrier permeability and white matter following prolonged systemic inflammation in early development in the rat. Eur J Neurosci 22(11):2805–2816

    CAS  PubMed  Google Scholar 

  • Stopschinski BE, Diamond MI (2017) The prion model for progression and diversity of neurodegenerative diseases. Lancet Neurol 16(4):323–332

    CAS  PubMed  Google Scholar 

  • Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, Mroue N (2019) GABA-modulating bacteria of the human gut microbiota. Nat Microbiol 4(3):396–403

    CAS  PubMed  Google Scholar 

  • Sudo N (2012) Role of microbiome in regulating the HPA axis and its relevance to allergy. Chem Immunol Allergy 98:163–175

    CAS  PubMed  Google Scholar 

  • Suzuki M, Yoshioka M, Hashimoto M et al (2013) Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutr 97(5):1004–1013

    CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira SJC (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    CAS  PubMed  Google Scholar 

  • Tan AH, Mahadeva S, Thalha AM, Gibson PR, Kiew CK, Yeat CM et al (2014) Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord 20:535–540

    PubMed  Google Scholar 

  • Tan AH, Chong CW, Song SL, Teh CSJ, Yap IKS, Loke MF, Tan YQ, Yong HS, Mahadeva S, Lang AE, Lim SY (2018) Altered gut microbiome and metabolome in patients with multiple system atrophy. Mov Disord 33(1):174

    PubMed  Google Scholar 

  • Tetz G, Brown SM, Hao Y, Tetz V (2018) Parkinson’s disease and bacteriophages as its overlooked contributors. Sci Rep 8(1):10812

    PubMed  PubMed Central  Google Scholar 

  • Tsigos C, Kyrou I, Kassi E, Chrousos GP (2016) Stress, endocrine physiology and pathophysiology. In: De Groot LJ, Chrousos G, Dungan K et al (eds) Endotext [Internet]. MDText. com Inc, South Dartmouth

    Google Scholar 

  • Unger MM, Möller JC, Mankel K, Schmittinger K, Eggert KM, Stamelou M et al (2011) Patients with idiopathic rapid-eye-movement sleep behavior disorder show normal gastric motility assessed by the 13C-octanoate breath test. Mov Disord 26:2559–2563

    PubMed  Google Scholar 

  • Unger MM, Spiegel J, Dillmann KU et al (2016a) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72

    PubMed  Google Scholar 

  • Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Bürmann J, Schäfer KH (2016b) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72

    PubMed  Google Scholar 

  • van Kessel SP, Frye AK, El-Gendy AO et al (2019) Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun 10(1):310

    PubMed  PubMed Central  Google Scholar 

  • Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C (2014) Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol 817:221–239

    CAS  PubMed  Google Scholar 

  • Yang D, Zhao D, Shah SZA, Wu W, Lai M, Zhang X, Gao H (2019) The role of the gut microbiota in the pathogenesis of Parkinson’s disease. Front Neurol 10:1155

    PubMed  PubMed Central  Google Scholar 

  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Hsiao EY (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2):264–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Chen X (2020) The progress of gut microbiome research related to brain disorders. J Neuroinflamm 17(1):25

    Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Ashok Chauhan, Founder, Amity University and honorable Chancellor Sir for providing us infrastructure and facilities and University Grant Commission (Government of India) for granting senior research fellowship to Ms Nitu Dogra to undertake this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepshikha Pande Katare.

Ethics declarations

Conflict of interest

The authors report no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogra, N., Mani, R.J. & Katare, D.P. The Gut-Brain Axis: Two Ways Signaling in Parkinson’s Disease. Cell Mol Neurobiol 42, 315–332 (2022). https://doi.org/10.1007/s10571-021-01066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-021-01066-7

Keywords

Navigation