Skip to main content
Log in

Numerical simulation of the deflagration to detonation transition

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The present work is focused on the numerical simulation of the deflagration to detonation transition. The Euler equations expressed for a time-dependent, compressible, and one-dimensional flow with finite-rate kinetics are solved with adaptive mesh refinement. Because of the problem stiffness, a time-step splitting method is used to couple the conservation equations and the chemical kinetics equations. The calculated length of the deflagration to detonation transition in H2-O2 and CH4-O2 mixtures in a confined domain and the time evolution of detonation are in good agreement with the theoretical values of constant volume explosions and Chapman-Jouguet conditions. The length of the transitional region is compared with experimental findings for a range of initial fuel concentrations, which shows that the model predicts the tendencies qualitatively well but yields significant quantitative deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. Bauer, E. K. Dabora, and N. Manson, “Chronology of early research on detonation-wave,” in: A. L. Kuhl, J. C. Leyer, A. A. Borisov, and W. A. Sirignano (eds.), Progress in Astronautics and Aeronautics, Vol. 133: Dynamics of Detonations and Explosions: Detonations, AIAA, Washington (1991), pp. 3–18.

    Google Scholar 

  2. R. G. Schmitt and P. B. Butler, “Detonation properties of gases at elevated initial pressures,” Combust. Sci. Technol., 106, 167–193 (1995).

    CAS  Google Scholar 

  3. J. E. Shepherd, “The chemical kinetics of hydrogen-air diluent detonations,” in: J. R. Bowen, J.-C. Leyer, and R. J. Soloukhin (eds.), Progress in Astronautics and Aeronautics, Vol. 106: Dynamics of Explosions, AIAA, Washington (1986), pp. 263–293.

    Google Scholar 

  4. M. A. Nettleton, Gaseous Detonations, Their Nature, Effects and Control, Chapman and Hall (1987).

  5. C. K. Westbrook, “Chemical kinetics of hydrocarbon oxidation in gaseous detonations,” Combust. Flame, 46, 191–210 (1982).

    Article  CAS  Google Scholar 

  6. B. M. Dobratz, “LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulants,” Report No. UCRL-52997, Lawrence Livermore National Laboratory, March (1981).

  7. W. Fickett and W. C. Davis, Detonation, The Univ. of California Press (1979).

  8. L. E. Bollinger, M. C. Fong, and R. Edse, “Experimental measurements and theoretical analysis of detonation induction distances,” ARS J., 31, 588–595 (1961).

    CAS  Google Scholar 

  9. J. B. Hinkey, T. R. A. Bussing, and L. Kaye, “Shock tube experiments for the development of a hydrogen-fueled pulse detonation engine,” AIAA Paper No. 95-2578 (1995).

  10. K. Kailasanath, E. S. Oran, J. P. Boris, and T. R. Young, “Determination of detonation cell size and the role of transverse waves in two-dimensional detonations,” Combust. Flame, 61, 199–209 (1985).

    Article  CAS  Google Scholar 

  11. H. K. Brüls, M. H. Lefebvre, and J. Berghmans, “On derivations from ideal Chapman-Jouguet detonation velocity,” in: Proc. Twenty-Fifth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh (1994), pp. 37–44.

    Google Scholar 

  12. N. N. Smirnov and J. J. Panfilov, “Deflagration to detonation transition in combustible gas mixtures,” Combust. Flame, 101, 91–100 (1995).

    Article  CAS  Google Scholar 

  13. A. K. Oppenheim, N. Manson, and H. G. G. Wagner, “Recent progress in detonation research,” AIAA J., 1, 2243–2252 (1963).

    Google Scholar 

  14. J. H. S. Lee, “Dynamics parameters of gaseous detonations,” Ann. Rev. Fluid Mech., 16, 311–336 (1984).

    Article  Google Scholar 

  15. H. J. Weber, A. Mack, and P. Roth, “Combustion and pressure wave interaction in enclosed mixture initiated by temperature nonuniformities,” Combust. Flame, 97, 281–295 (1994).

    Article  CAS  Google Scholar 

  16. P. A. Bauer, H. N. Presles, and M. Dunard, “Detonation characteristics of gaseous methane-oxyden-nitrogen mixtures at extremely elevated initial pressures,” in: A. L. Kuhl, J. C. Leyer, A. A. Borisov, and W. A. Sirignano (eds.), Progress in Astronautics and Aeronautics, Vol. 133: Dynamics of Detonations and Explosions: Detonations, AIAA, Washington (1991), pp. 56–62.

    Google Scholar 

  17. L. He and P. Calvin, “Critical conditions for detonation initiation in cold gaseous mixtures by nonuniform hot pockets of reactive gases,” in: 24th Symp. on Combustion (1992), pp. 1861–1867.

  18. U. Bielert and M. Sichel, “Numerical simulation of premixed combustion processes in closed tubes,” Combust. Flame, 114, 397 (1998).

    Article  CAS  Google Scholar 

  19. J. Warnatz, U. Maas, and R. W. Dibble, Combustion, Springer (1996).

  20. E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow, Elsevier, New York (1987).

    Google Scholar 

  21. R. J. Gross and M. R. Baer, “ETBFCT A Solver for One-Dimensional Transport Equations,” Report No. SAND85-1273, Sandia National Laboratories (1985).

  22. R. G. Schmitt, P. B. Butler, and N. French, “Chemkin Real Gas: A Fortran Package for the Analysis of Thermodynamics and Chemical Kinetics in High Pressure Systems,” Report No. UIME-PBB 93-006, University of Iowa (1993).

  23. J. K. Bechtold and C. K. Law, “Extinction of premixed methane-air flames with reduced reaction mechanism,” Combust. Sci. Technol., 100, 371–378 (1994).

    CAS  Google Scholar 

  24. G. O. Thomas, M. J. Edwards, and D. H. Edwards, “Studies of detonation quenching by water sprays,” Combust. Sci. Technol., 71, 233–245 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 2, pp. 108–115, March–April, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parra-Santos, M.T., Castro-Ruiz, F. & Méndez-Bueno, C. Numerical simulation of the deflagration to detonation transition. Combust Explos Shock Waves 41, 215–222 (2005). https://doi.org/10.1007/s10573-005-0025-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-005-0025-z

Key words

Navigation