Skip to main content
Log in

Specific features of thermal decomposition of ammonium perchlorate subjected to γ radiation

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Results of studying thermal decomposition of ammonium perchlorate (AP) samples in the original form and after irradiation by γ-quanta of 60Co by methods of differential scanning calorimetry and dynamic thermogravimetry with heating rates b = 0.1–0.3 K/sec are described. Irradiation is performed in air at a temperature of 298 ± 2 K and a dose rate of ≈0.2 Gy/sec in the range of absorbed doses D = 0–150 kGy. Preliminary irradiation is demonstrated to lead to substantial transformations of the pattern of thermal decomposition of ammonium perchlorate in the dynamic regime of heating: the single-stage process of decomposition of non-irradiated samples proceeding at b = 0.107 K/sec in the temperature range of 625 to 743 K is replaced by a multistage process. At D = 150 kGy, exothermal transformations accompanied by noticeable losses of sample mass are observed starting from 473 K. Within experimental errors, the total thermal effect of AP decomposition is found to be independent of the absorbed dose and amounts to −1150 kJ/kg on the average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Zhukov (ed.), Condensed Energetic Systems. Brief Encyclopedic Dictionary [in Russian], Yanus-K, Moscow (1999).

    Google Scholar 

  2. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Powders and Explosives [in Russian], Nauka (1996).

  3. L. P. Smirnov, “Chemical physics of decomposition of energetic materials. Problems and prospects,” Usp. Khim., 73, No. 11, 1210–1232 (2004).

    Google Scholar 

  4. E. S. Kim, H. S. Lee, C. F. Mallery, and S. T. Thynell, “Thermal decomposition studies of energetic materials using confined rapid thermolysis/FTIR spectroscopy,” Combust. Flame, 110, 239–255 (1997).

    Article  Google Scholar 

  5. L. P. Orlenko (ed.), Physics of Explosion [in Russian], Vol. 1, Fizmatlit, Moscow (2002).

    Google Scholar 

  6. V. A. Berstein and V. M. Egorov, Differential Scanning Calorimetry in Polymer Physics and Chemistry [in Russian], Khimiya, Leningrad (1990).

    Google Scholar 

  7. W. W. Wendlandt, Thermal Methods of Analysis, Wiley, New York (1974).

    Google Scholar 

  8. A. A. Koptelov, “A calorimetric method for studying radiation-chemical processes in condensed media,” Instrum. Exp. Tech., 46, No. 3, 430–433 (2003).

    Article  Google Scholar 

  9. Encyclopedia of Explosives and Related Items, Vol. 9, US Army Armament Research and Development Command, Large Caliber Weapon Systems Laboratory, Dover (1980).

  10. A. A. Koptelov, S. V. Karyazov, and Yu. M. Milekhin, “Thermal effects in γ-irradiated elastomers,” Dokl. Chem., 397, Part 2, 168–172 (2004).

    Article  Google Scholar 

  11. E. L. Simmons and W. W. Wendlandt, “Non-isothermal rate equations,” Thermochim. Acta, 3, No. 6, 498–502 (1972).

    Article  Google Scholar 

  12. G. D. Sammons, “Dynamic calorimetric solid propellant. Combustion studies,” AIAA Paper No. 69-504 (1969).

  13. P. W. M. Jackobs and H. M. Whitehead, “Decomposition and combustion of ammonium perchlorate,” Chem. Rev., 69, 551–590 (1969).

    Article  Google Scholar 

  14. O. F. Shlenskii, N. V. Afanas’ev, and A. G. Shashkov, Thermal Destruction of Materials. Polymers and Composites under Intense Heating [in Russian], Énergoatomizdat, Moscow (1996).

    Google Scholar 

  15. B. N. Oleinik, Precise Calorimetry [in Russian], Izd. Standartov, Moscow (1973).

    Google Scholar 

  16. V. V. Barzykin, “Thermal explosion under linear heating,” Combust., Expl., Shock Waves, 9, No. 1, 29–42 (1973).

    Article  Google Scholar 

  17. A. A. Koptelov, Yu. M. Milekhin, and D. N. Sadovnichii, “Effect of γ radiation on the character of thermal decomposition of cyclotetramethylenetetranitroamine,” in: Proc. XI Russian Conf. on Thermophysical Properties of Substances [in Russian], Vol. 1, St. Petersburg (2005), p. 76.

    Google Scholar 

  18. V. A. Kireev, Methods of Practical Calculations in Thermodynamics of Chemical Reactions [in Russian], Khimiya, Moscow (1975).

    Google Scholar 

  19. B. V. Orlov and G. Yu. Mazing, Thermodynamic and Ballistic Basis for Design of Solid-Propellant Rocket Engines [in Russian], Mashinostroenie, Moscow (1968).

    Google Scholar 

  20. A. A. Koptelov, S. V. Karyazov, and O. F. Shlenskii, “The kinetics of crystallization of poly(tetrafluoroethylene) by the action of γ radiation,” High Ener. Chem., 37, No. 3, 151–156 (2003).

    Article  Google Scholar 

  21. E. S. Watson, M. J. O’Neill, J. Justin, and N. Brenner, “A differential scanning calorimeter for quantitative differential thermal analysis,” Anal. Chem., 36, No. 7, 1233–1240 (1964).

    Article  Google Scholar 

  22. A. A. Koptelov and Yu. V. Zelenev, “Determination of kinetic parameters of thermal processes in decomposing thermal-protection materials,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 46, No. 3, 55–57 (2003).

    Google Scholar 

  23. K. Kishore, “Study of solid state kinetics by differential scanning calorimetry,” Anal. Chem., 50, No. 8, 1079–1083 (1978).

    Article  Google Scholar 

  24. A. K. Burnham and R. K. Weese, “Thermal decomposition of HMX,” in: Proc. of 36th Int. Annu. Conf. of ICT., Karlsruhe, June 28–July 1 (2005), pp. 152.1–152.12.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Koptelov.

Additional information

__________

Translated from Fizika Goreniya i Vzryva, Vol. 43, No. 6, pp. 69–74, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koptelov, A.A., Milekhin, Y.M. Specific features of thermal decomposition of ammonium perchlorate subjected to γ radiation. Combust Explos Shock Waves 43, 682–687 (2007). https://doi.org/10.1007/s10573-007-0091-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10573-007-0091-5

Key words

Navigation