Skip to main content
Log in

Finite systems, fractional Fourier transforms and their finite phase spaces

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Various harmonic oscillator models define — in a sense to be explained here — fractional Fourier transforms (up to a phase). The fractionalization of the Fourier integral transform is well understood; the finite case is less. There are several discrete and finite oscillator models that contract to the continuous, integral model. The Ankara model can be thought as a ring of point masses joined by springs to their equilibrium positions and to each other; the Cuernavaca model uses the su(2) algebra with a distinct physical interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Moshinsky and C. Quesne: in Proceedings of the 15th Solvay Conference in Physics, 1970, Gordon & Breach, New York, 1974. M. Moshinsky and C. Quesne: J. Math. Phys. 12 (1971) 1772. C. Quesne and M. Moshinsky: J. Math. Phys. 12 (1971) 1780. M. Moshinsky: SIAM J. Appl. Math. 25 (1973) 193.

    Google Scholar 

  2. K.B. Wolf: Integral Transforms in Science and Engineering. Plenum Publ. Corp., New York, 1979.

    Google Scholar 

  3. H.M. Ozaktas, Z. Zalevsky, and M. Alper Kutay: The Fractional Fourier Transform. John Wiley, Chichester, 2000.

    Google Scholar 

  4. K.B. Wolf: J. Math. Phys. 15 (1974) 1295.

    MATH  Google Scholar 

  5. V. Namias: J. Inst. Math. Appl. 25 (1980) 241.

    MathSciNet  MATH  Google Scholar 

  6. A.W. Lohmann: J. Opt. Soc. Am. A 10 (1993) 2181. D. Mendlovic and H.M. Ozaktas: J. Opt. Soc. Am. A 10 (1993) 1875. A.W. Lohmann and D. Mendlovic: Appl. Opt. 33 (1994) 7661. A.W. Lohmann: Opt. Commun. 115 (1995) 437. A.W. Lohmann, D. Mendlovic, and Z. Zalevsky: in Progress in Optics XXXVIII, Elsevier, Amsterdam, 1998, Chap. IV, p. 263. D. Mendlovic, Z. Zalevsky and H.M. Ozaktas: in Optical Pattern Recognition, Cambridge University Press, Cambridge 1998, Chap. 4, p. 89.

    ADS  Google Scholar 

  7. M.L. Mehta: J. Math. Phys. 28 (1987) 781.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. L. Barker, C. Candan, T. Hakioglu, A. Kutay, and H.M. Ozaktas: J. Phys. A 33 (2000) 2209.

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Candan: The discrete fractional Fourier transform. M.Sc. Thesis, Institute of Engineering and Sciences of Bilkent University, Ankara, 1998.

    Google Scholar 

  10. T. Hakioglu: J. Phys. A 31 (1998) 6975. A. Luis and J. Perina: J. Phys. A 31 (1998) 1423. T. Hakioglu: J. Phys. A 32 (1999) 4111. T. Hakioglu and K.B. Wolf: J. Phys. A 33 (2000) 3313.

    MathSciNet  MATH  ADS  Google Scholar 

  11. N.M. Atakishiyev, D. Galetti, and J. Rueda: On relations between certain q-polynomial families generated by the finite Fourier transform. Report IFTP.013/2005, Universidade Estadual Paulista, Sao Paulo, March 2005.

    Google Scholar 

  12. S.-C. Pei and M.-H. Yeh: Opt. Lett. 22 (1997) 1047. S.-C. Pei, C.-C. Tseng, M.-H. Yeh and J.-J. Shyu: IEEE Trans.Circuits Systems II 45 (1998) 665. S.-C. Pei, M.-H. Yeh and C.-C. Tseng: IEEE Trans. Signal Processing 47 (1999) 1335.

    ADS  Google Scholar 

  13. J.H. McClellan and T.W. Parks: IEEE Trans. Audio Electroacoust. 20 (1972) 66. T.S. Santhanam and A.R. Tekumalla: Found. Phys. 6 (1976) 583. F.A. Grunbaum: J. Math. Anal. Appl. 88 (1982) 355. C. Belingeri and P.E. Ricci: Int. Transf. Spec. Funct. 3 (1995) 165. T.S. Santhanam: in Proc. Workshop on Special Functions and Di.erential Equations, (Eds. K. Srinivasa Rao et al.), Allied Publ., Delhi, 1998.

    Article  MathSciNet  Google Scholar 

  14. T. Opatrny: J. Phys. A 28 (1995) 6961. G.W. Forbes and M.A. Alonso: Am. J. Phys. 69 (2001) 340.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. S. Chountasis, A. Vourdas, and C. Bendjaballah: Phys. Rev. A 60 (1999) 3467. S. Zhang and A. Vourdas: J. Math. Phys. 44 (2003) 5084. A. Vourdas: Rep. Prog. Phys. 67 (2004) 267.

    Article  MathSciNet  ADS  Google Scholar 

  16. N.M. Atakishiyev and K.B. Wolf: Rev. Mex. Fis. 40 (1994) 366. N.M. Atakishiyev and K.B. Wolf: J. Opt. Soc. Am. A 14 (1997) 1467. N.M. Atakishiyev, L.E. Vicent, and K.B. Wolf: J. Comp. Appl. Math. 107 (1999) 73.

    MathSciNet  Google Scholar 

  17. N.M. Atakishiyev, S.M. Chumakov, and K.B. Wolf: J. Math. Phys. 39 (1998) 6247. S.T. Ali, N.M. Atakishiyev, S.M. Chumakov, and K.B. Wolf: Ann. Henri Poincare 1 (2000) 685.

    Article  MathSciNet  ADS  Google Scholar 

  18. N.M. Atakishiyev, G.S. Pogosyan, and K.B. Wolf: Phys. Part. Nuclei, Suppl. 3 36 (2005) 521.

    Google Scholar 

  19. N.M. Atakishiyev, G.S. Pogosyan, and K.B. Wolf: Int. J. Mod. Phys. A 18 (2003) 317. N.M. Atakishiyev, G.S. Pogosyan, and K.B. Wolf: Int. J. Mod. Phys. A 18 (2003) 329.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented at the International Colloquium “Integrable Systems and Quantum Symmetries”, Prague, 16–18 June 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, K.B. Finite systems, fractional Fourier transforms and their finite phase spaces. Czech J Phys 55, 1527–1534 (2005). https://doi.org/10.1007/s10582-006-0036-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-006-0036-3

Key words

Navigation