Skip to main content
Log in

Erosion of needle electrodes in pulsed corona discharge in water

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Erosion of needle electrodes in the pulsed corona discharge in water with a pulse energy of ∼ 2÷; 3 J was investigated in dependence on the electrode material (platinum, tungsten and stainless-steel) and the solution conductivity (100 and 500 µS/cm). Erosion of electrodes remarkable increased with the higher solution conductivity for all three tested metals. The highest erosion rates were determined for tungsten while platinum was the least eroded material. In addition to the dominant melting effect, release of anode material by the electrolysis significantly contributed to the total erosion of needle electrodes. The highest contribution of electrolysis was determined for stainless-steel electrodes that released up to 40–50% of eroded metal in the form of iron ions. Peculiar protrusions were observed on the surface of eroded tungsten electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Jones, E. E. Kunhardt: J. Appl. Phys. 77 (1995) 795.

    Article  ADS  Google Scholar 

  2. B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, J. S. Chang: Ind. Eng. Chem. Res. 45 (2006) 882.

    Article  Google Scholar 

  3. V. L. Goryachev, F. G. Rutberg, V. N. Fedyukovich: High Temp. 34 (1996) 746.

    Google Scholar 

  4. V. L. Goryachev, A. A. Ufimtsev, A. M. Khodakovskii: Tech. Phys. Lett. 23 (1997) 386.

    Article  ADS  Google Scholar 

  5. V. I. Blokhin, F. I. Vysikailo, K. I. Dmitriev, N. M. Efremov: High Temp. 37 (1999) 963.

    Google Scholar 

  6. D. D. DiBitonto, P. T. Eubank, M. R. Patel, M. A. Barrufet: J. Appl. Phys. 66 (1989) 4104.

    Article  ADS  Google Scholar 

  7. M. R. Patel, M. A. Barrufet, P. T. Eubank, D. D. DiBitonto: J. Appl. Phys. 66 (1989) 4095.

    Article  ADS  Google Scholar 

  8. M. J. Kirkpatrick, B. R. Locke: Ind. Eng. Chem. Res. 45 (2006) 2138.

    Article  Google Scholar 

  9. P. Lukeš, M. Člupek, P. Šunka, V. Babický, V. Janda: Czech. J. Phys. 52 (2002) D800.

    Google Scholar 

  10. P. Šunka, V. Babický, M. Člupek, P. Lukeš, M. Šimek, J. Schmidt, M. Černák: Plasma Sources Sci. Technol. 8 (1999) 258.

    Article  ADS  Google Scholar 

  11. G. H. Ayres, A. S. Meyer: Anal. Chem. 23 (1951) 199.

    Google Scholar 

  12. H. Freund, M. L. Wright, R. K. Brookshier: Anal. Chem. 23 (1951) 781.

    Article  Google Scholar 

  13. N. H. Furman (Ed.): Standard Methods of Chemical Analysis, Vol. 1. D. Van Nostrand Co., Princeton 1962, p. 552.

    Google Scholar 

  14. D. R. Lide (Ed.): CRC Handbook of Chemistry and Physics. CRC Press, New York 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukeš, P., Člupek, M., Babický, V. et al. Erosion of needle electrodes in pulsed corona discharge in water. Czech J Phys 56 (Suppl 2), B916–B924 (2006). https://doi.org/10.1007/s10582-006-0304-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-006-0304-2

Key words

Navigation