Skip to main content

Advertisement

Log in

Warming of an elevated layer over Africa

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

This paper analyzes trends of temperatures over Africa and seeks to quantify the most significant processes. Observations of air temperature reveal significant warming trends in the 925–600 hPa layer over tropical west Africa and the east Atlantic. This is related to the influence of desert dust and biomass burning emissions on the atmospheric energy budget. We calculate a net radiative absorption of ∼− 20 W m − 2. The southern (northern) plume is rich in short-lived greenhouse gases (dust aerosols), and the atmospheric response, according to a simplified radiative transfer model, is a >3°C heating of the 2–4 km layer. The observed pattern of warming coincides with a mixture of dust, black carbon and short-lived greenhouse gases in space, time and height. Physical forcing provides a secondary source of regional warming, with sinking motions over the Sahel. The elevated warm layer stabilizes the lower atmosphere over and west of Africa, so drying trends may be anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel SJ, Haywood JM, Highwood EJ, Li J, Buseck PR (2003) Evolution of biomass burning aerosol properties from an agriculture fire in southern Africa. Geophys Res Lett 30:1783. doi:10.1029/2003GL017342

    Article  Google Scholar 

  • Anderson BE, William GB, Gerald GL, Edward BV, Collins JE, Glen SW, Bagwell DR, Hudgins CH, Blake DR, Blake NJ (1996) Aerosols from biomass burning over the tropical South Atlantic region: distribution and impacts. J Geophys Res 101:24117–24137

    Article  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966

    Article  Google Scholar 

  • Anyamba A, Justice CO, Tucker CJ, Mahoney R (2003) Seasonal to interannual variability of vegetation and fires at SAFARI-2000 sites inferred from AVHRR time series data. J Geophys Res 108(D13):8507

    Article  Google Scholar 

  • Bergstrom RW, Pilewskie P, Schmid B, Russell B (2003) Esimates of spectral aerosol single scattering albedo and aerosol radiative effects during Safari2000. J Geophys Res 108(13):8474

    Article  Google Scholar 

  • Bird MI, Cali JA (1998) A million-year record of fire in sub-Saharan Africa. Nature 394:767–769

    Article  Google Scholar 

  • Carlson T, Benjamin S (1982) Radiative heating rates for desert aerosol. In: Deepak A (ed) Atmospheric aerosols: their formation, optical properties and effects. Spectrum, Hampton, pp 435–457

    Google Scholar 

  • Chang P, Saravanan R, Ji L, Hegerl GC (2000) The effect of local sea surface temperature on atmospheric circulation over the tropical Atlantic sector. J Climate 13:2195–2216

    Article  Google Scholar 

  • Christopher SA, Joyce C, Zhang J, Li X, Todd A (2000) Shortwave direct radiative forcing of biomass burning aerosols estimated using VIRS and CERES data. Geophys Res Lett 27:2197–2200

    Article  Google Scholar 

  • Duce RA (1995) Sources, distributions, and fluxes of mineral aerosols and their relationship to climate. In: Charlson RJ, Heintzenburg J (eds) Aerosol forcing of climate. Wiley, New York, pp 43–72

    Google Scholar 

  • Eck TF, Holben BN, Ward DE, Dubovik O, Reid JS, Smirnov A, Mukelabai MM, Hsu NC, O’Neill NT, Slutsker I (2001) Characterization of the optical properties of biomass burning aerosols in Zambia during the 1997 ZIBBEE field campaign. J Geophys Res 106:3425–3448

    Article  Google Scholar 

  • Edwards JM, Slingo A (1996) Studies with a flexible new radiation code: I: choosing a configuration for a large-scale model. Q J R Meteorol Soc 122:689–719

    Article  Google Scholar 

  • Feddema JJ, Freire S (2001) Soil degradation, global warming and climate impacts. Clim Res 17:209–216

    Article  Google Scholar 

  • Hawkins MD, Morris VR, Nalli NR, Joseph E (2007) Comparison of aeroso1 and ozone profiles within Saharan dust and biomass burning plumes. Proc. AMS Conf. Atmos. Chem, Austin, J7.9

  • Haywood JM, Shine KP (1995) The effect of anthropogenic sulphate and soot aerosol on the clear sky planetary radiation budget. Geophys Res Lett 22:603–606

    Article  Google Scholar 

  • Haywood J, Francis P, Dubovik O, Glew MD, Holben BN (2003) Comparison of aerosol size distributions, radiative properties and optical depths determined by aircraft observations and sun photometers during SAFARI-2000. J Geophys Res 108(D13):SAF7.1–SAF7.12

    Google Scholar 

  • Hély C, Alleaume S, Swap RJ, Shugart HH, Justice CO (2003) SAFARI-2000 characterization of fuels, fire behaviours, combustion completeness, and emissions from experimental burns in infertile grass savannas in western Zambia. J Arid Environ 54:381–394

    Article  Google Scholar 

  • Hobbs PV (1993) Aerosol–cloud interactions. In: Hobbs PV (ed) Aerosol–cloud–climate interactions. Academic, New York, pp 33–95

    Chapter  Google Scholar 

  • Hobbs PV (2000) Introduction to atmospheric chemistry. Cambridge University Press, New York

    Google Scholar 

  • Hobbs PV, Sinha P, Yokelson RJ, Christian TJ, Blake DR, Gao S, Kirchstetter TW, Novakov T, Pilewskie P (2003) Evolution of gases and particles from a Savanna fire in South Africa. J Geophys Res 108(D13):8485. doi:10.1029/2002JD002352

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change. The Scientific basis, Cambridge

    Google Scholar 

  • Hsu NC, Herman JR, Tsay S (2003) Radiative impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia. Geophys Res Lett 30(4):1224

    Article  Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2100. Clim Res 17:145–168

    Article  Google Scholar 

  • Iacobellis SF, Frouin R, Somerville RCJ (1999) Direct climate forcing by biomass-burning aerosols: impact of correlations between controlling variables. J Geophys Res 104:12031–12045

    Article  Google Scholar 

  • Ichoku C, Remer LA, Kaufman YJ, Levy R, Chu DA, Tanre D, Holben BN (2003) MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during Safari2000. J Geophys Res 108(D13):8499

    Article  Google Scholar 

  • Jacobson MZ (2004) The short-term cooling but long-term warming due to biomass burning. J Climate 17:2909–2926

    Article  Google Scholar 

  • Jaenicke R (1993) Tropospheric aerosols. In: Hobbs PV (ed) Aerosol–cloud–climate interactions. Academic, New York, pp 1–131

    Chapter  Google Scholar 

  • James IN (1995) Introduction to circulating atmospheres. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones C, Mahowald N, Luo C (2003) The role of Easterly Waves on African desert dust transport. J Climate 16:3617–3628

    Article  Google Scholar 

  • Jury MR (2003) Coherent variability of African River flows, composite climate structure and the Atlantic circulation. Water SA 29:1–10

    Google Scholar 

  • Jury MR, Winter A (2009) Warming of an elevated layer over the Caribbean. Clim Change. doi:10.1007/s10584-009-9658-3

    Google Scholar 

  • Kalnay E, co-authors (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kaufman YJ, Fraser RS (1997) The effect of smoke particles on clouds and climate forcing. Science 277:1636–1639

    Article  Google Scholar 

  • Kaufmann YJ, Koren I, Remer LA, Tanre D, Ginoux P, Fan S (2005) Dust transport and deposition observed from MODIS over the Atlantic Ocean. J Geophys Res 110(10):512

    Article  Google Scholar 

  • Keil A, Haywood JM (2003) Solar radiative forcing by biomass burning aerosol particles in cloudy skies during SAFARI-2000. J Geophys Res 108(D13):8467

    Article  Google Scholar 

  • Kiehl JT, Briegleb BP (1993) The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260:311–314

    Article  Google Scholar 

  • Korontzi S, Justice CO, Scholes RJ (2003) Influence of timing and spatial extent of savanna fires in southern Africa on atmospheric emissions. J Arid Environ 54:395–404

    Article  Google Scholar 

  • Lacis AA, Hansen JE (1974) A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci 31:118–133

    Article  Google Scholar 

  • Langner J, Rodhe H (1991) A global-three-dimensional model of the tropospheric sulfur cycle. J Atmos Chem 13:225–263

    Article  Google Scholar 

  • Li Z, Williams AL, Rood MJ (1998) Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute. J Atmos Sci 55:1859–1866

    Article  Google Scholar 

  • Lohmann U, Feichter J (2004) Global indirect aerosol effects: a review. Atmos Chem Phys Discuss 4:7561–7614

    Google Scholar 

  • Lohmann U, Feichter J, Penner J, Leaitch R (2000) Indirect effect of sulfate and carbonaceous aerosols: a mechanistic treatment. J Geophys Res 105:12193–12206

    Article  Google Scholar 

  • Magi BI, Hobbs PV (2003) Effects of humidity on aerosols in southern Africa during the biomass burning season. J Geophys Res 108(D13):SAF31.1–SAF31.12

    Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Mfuamba J-P (2007) Tropospheric ozone climatology at Brazzaville. M.Sc. thesis, Univ. K.Z. Natal, Durban, 88 pp

  • Myhre G, Bertsen TK, Haywood JM, Sundet JK, Holben BN, Johnsrud M, Stordal F (2003) Modeling the solar radiative impact of aerosols from biomass burning during SAFARI-2000. J Geophys Res 108(D13):8501

    Article  Google Scholar 

  • Paeth H (2004) Key factors in African climate change evaluated by a regional climate model. Erdkunde 58:290–315

    Article  Google Scholar 

  • Paeth H, Hense A (2004) SST versus climate change signals in West African rainfall: 20th century variations and future projections. Clim Change 65:179–208

    Article  Google Scholar 

  • Penner JE (1995) Carbonaceous aerosols influencing atmospheric radiation: black and organic carbon. In: Charlson RJ, Heintzenburg J (eds) Aerosol forcing of climate. Wiley, New York, pp 91–108

    Google Scholar 

  • Penner JE, Dickson RE, O’Neill CA (1992) Effects of aerosols from biomass burning on the global radiation budget. Science 256:1432–1433

    Article  Google Scholar 

  • Penner JE, Charlson RJ, Hales JM, Laulainen NS, Leifer R, Novalov T, Ogren J, Radke LF, Schwartz SE, Travis L (1994) Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols. Bull Am Meteorol Soc 75:375–400

    Article  Google Scholar 

  • Penner JE, Chuang CC, Grant K (1998) Climate forcing by carbonaceous and sulfate aerosols. Clim Dyn 14:839–851

    Article  Google Scholar 

  • Pilewski P, Pommier J, Bergstrom R, Gore W, Howard S, Rabbette M, Schmid U, Hobbs PV, Tsay SC (2003) Solar spectral radiative forcing during SARARI2000. J Geophys Res 108(D13):8486

    Article  Google Scholar 

  • Prospero JM, Lamb PJ (2003) African droughts and dust transport to the Carribean: climate change implications. Science 302:1024–1027

    Article  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    Article  Google Scholar 

  • Rosenfeld D (1999) TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys Res Lett 26:3105–3108

    Article  Google Scholar 

  • Rotstayn LD, Penner JE (2001) Indirect aerosol forcing, quasi forcing, and climate response. J Clim 14:2960–2975

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Sinha P, Hobbs PV, Yokelson RJ, Bertschi IT, Blake DR, Simpson IJ, Gao S, Kirchstetter TW, Novakov T (2003) Emissions of trace gases and particles from savanna fires in southern Africa. J Geophys Res 108(D13):8487

    Article  Google Scholar 

  • Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Balkanski Y, Schulz M, Boucher O (2004) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 4:5551–5623

    Article  Google Scholar 

  • Tegen I, Lacis AA, Fung I (1996) The influence of climate forcing of mineral aerosols from disturbed soils. Nature 380:419–422

    Article  Google Scholar 

  • Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • Whitehall K (2003) The emissions of biomass burning aerosols in the tropics and their radiative impacts. M.Sc. thesis, Meteorol. Dept. Univ. Reading, 80 pp

  • Wong S, Dessler AE, Colarco PR, dsSilva A (2007) The instability associated with the cross-Atlantic transport of Saharan dust and its meteorological implications. Proc. AMS Conf. Atmos. Chem., Austin, J7.8

  • Ziemke JR, Chandral S, Bhartia PK (2005) A 25-year data record of atmospheric ozone in the pacific from Total Ozone Mapping Spectrometer (TOMS) cloud slicing: implications for ozone trends in the stratosphere and troposphere. J Geophysical Res 110:D15105. doi:10.1029/2004JD005687

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Jury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jury, M.R., Whitehall, K. Warming of an elevated layer over Africa. Climatic Change 99, 229–245 (2010). https://doi.org/10.1007/s10584-009-9657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-009-9657-4

Keywords

Navigation