Skip to main content

Advertisement

Log in

Osteopontin Knockdown Suppresses Tumorigenicity of Human Metastatic Breast Carcinoma, MDA-MB-435

  • Original paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Elevated expression of osteopontin (OPN), a secreted phosphoglycoprotein, is frequently associated with many transformed cell lines. Various studies suggest that OPN may contribute to tumor progression as well as metastasis in multiple tumor types. High levels of OPN have been reported in patients with metastatic cancers, including breast. We found that the expression of OPN corroborates with the aggressive phenotype of the breast cancer cells i.e. the expression of OPN is acquired as the breast cancer cells become more aggressive. To assess the role(s) of OPN in breast carcinoma, expression of endogenous OPN was knocked down in metastatic MDA-MB-435 human breast carcinoma cells using RNA interference. We targeted multiple regions of the OPN transcript for RNA interference, along with ‘scrambled’ and ‘non-targeting siRNA pool’ controls to distinguish between target-specific and potential off-target effects including interferon-response gene (PeIF2-α) induction. The OPN knockdown by shRNA suppressed tumor take in immunocompromised mice. The ‘silenced’ cells also showed significantly lower invasion and migration in modified Boyden chamber assays and reduced ability to grow in soft agar. Thus, in addition to the widely reported roles of OPN in late stages of tumor progression, these results provide functional evidence that OPN contributes to breast tumor growth as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CMF-DPBS:

Calcium- and magnesium-free Dulbecco’s phosphate buffered saline

DMEM-F12:

Mixture (1:1) Dulbecco’s-modified minimum essential medium and Ham’s F-12 medium

HBSS:

Hank’s balanced salt solution

SDS:

Sodium dodecyl sulfate

PAGE:

Poly acrylamide gel electrophoresis

References

  1. Singhal H, Bautista DS, Tonkin KS et al. (1997) Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res 3(4):605–611

    PubMed  CAS  Google Scholar 

  2. Tuck AB, O’Malley FP, Singhal H et al. (1998) Osteopontin expression in a group of lymph node negative breast cancer patients. Int J Cancer 79(5):502–508

    Article  PubMed  CAS  Google Scholar 

  3. Agrawal D, Chen T, Irby R et al. (2002) Osteopontin identified as lead marker of colon cancer progression using pooled sample expression profiling. J Natl Cancer Inst 94(7):513–521

    PubMed  CAS  Google Scholar 

  4. Rudland PS, Platt-Higgins A, El-Tanani M et al. (2002) Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res 62:3417–3427

    PubMed  CAS  Google Scholar 

  5. Coppola D, Szabo M, Boulware D et al. (2004) Correlation of osteopontin protein expression and pathological stage across a wide variety of tumor histologies. Clin Cancer Res 10:184–190

    Article  PubMed  CAS  Google Scholar 

  6. Tuck AB, Arsenault DM, O’Malley FP et al. (1999) Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells. Oncogene 18(29):4237–4236

    Article  PubMed  CAS  Google Scholar 

  7. Oates AJ, Barraclough R, Rudland PS (1996) The identification of osteopontin as a metastasis-related gene product in a rodent mammary tumour model. Oncogene 13(1):97–104

    PubMed  CAS  Google Scholar 

  8. Philip S, Bulbule A, Kundu G (2001) Osteopontin promotes tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-κB mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J␣Biol Chem 276(48):44926–44935

    Google Scholar 

  9. Adwan H, Bauerle TJ, Berger MR (2004) Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells. Cancer Gene Ther 11(2):109–120

    Article  PubMed  CAS  Google Scholar 

  10. Adwan H, Bauerle T, Najajreh Y et al. (2004) Decreased levels of osteopontin and bone sialoprotein II are correlated with reduced proliferation, colony formation, and migration of GFP-MDA-MB-231 cells. Int J Oncol 24(5):1235–1234

    PubMed  CAS  Google Scholar 

  11. Tani-Ishii N, Tsunoda A, Umemoto T (1997) Osteopontin antisense deoxyoligonucleotides inhibit bone resorption by mouse osteoclasts in vitro. J Periodontal Res 32(6):480–486

    Article  PubMed  CAS  Google Scholar 

  12. Mukhopadhyay R, Price JE (1999) Stable expression of antisense osteopontin inhibits the growth of human breast cancer cells. Proc Am Assoc Cancer Res, 90th Annual Meeting, Philadelphia, PA, April 10–14, 40:448

  13. Gardner HA, Berse B, Senger DR (1994) Specific reduction in osteopontin synthesis by antisense RNA inhibits the tumorigenicity of transformed Rat1 fibroblasts. Oncogene 9(8):2321–2326

    PubMed  CAS  Google Scholar 

  14. Su L, Mukherjee AB, Mukherjee BB (1995) Expression of␣antisense osteopontin RNA inhibits tumor promoter- induced neoplastic transformation of mouse JB6 epidermal cells. Oncogene 10(11):2163–2169

    PubMed  CAS  Google Scholar 

  15. Behrend EI, Craig AM, Wilson SM et al. (1994) Reduced malignancy of ras-transformed NIH 3T3 cells expressing antisense osteopontin RNA. Cancer Res 54(3):832–837

    PubMed  CAS  Google Scholar 

  16. Nemoto H, Rittling SR, Yoshitake H et al. (2001) Osteopontin deficiency reduces experimental tumor cell metastasis to bone and soft tissues. J Bone Miner Res 16(4):652–659

    Article  PubMed  CAS  Google Scholar 

  17. Wu Y, Denhardt DT, Rittling SR (2000) Osteopontin is required for full expression of the transformed phenotype by the ras oncogene. Br J Cancer 83(2):156–163

    Article  PubMed  CAS  Google Scholar 

  18. Rittling SR, Novick KE (1997) Osteopontin expression in mammary gland development and tumorigenesis. Cell Growth Differ 8(10):1061–1069

    PubMed  CAS  Google Scholar 

  19. Furger KA, Menon RK, Tuck AB et al. (2001) The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med 1(5):621–632

    Article  PubMed  CAS  Google Scholar 

  20. Tuck AB, Chambers AF (2001) The role of osteopontin in breast cancer: clinical and experimental studies. J Mammary Gland Biol Neoplasia 6(4):419–429

    Article  PubMed  CAS  Google Scholar 

  21. Rittling SR, Chambers AF (2004) Role of osteopontin in tumor progression. BR J Cancer 90:1877–1881

    Article  PubMed  CAS  Google Scholar 

  22. Cook AC, Tuck AB, McCarthy S et al. (2005) Osteopontin induces multiple changes in gene expression that reflect the six ‘‘Hallmarks of Cancer’’ in a model of breast cancer progression. Mol Carcinogenesis 43:225–236

    Article  CAS  Google Scholar 

  23. Khodavirdi AC, Song Z, Yang S et al. (2006) Increased expression of osteopontin contributes to the progression of prostate cancer. Cancer Res 66(2):883–888

    Article  PubMed  CAS  Google Scholar 

  24. McManus M, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Revs 3:737–747

    Article  CAS  Google Scholar 

  25. Medema RH (2004) Optimizing RNA interference for application in mammalian cells. Biochem J 380(Pt 3):593–603

    Article  PubMed  CAS  Google Scholar 

  26. Santner SJ, Dawson PD, Tait L et al. (2001) Malignant MCF10CA1 celllines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat 65:101–110

    Article  PubMed  CAS  Google Scholar 

  27. Miller FR, Santner SJ, Tait L et al. (2000) MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst 92(14):1185–1186

    Article  PubMed  CAS  Google Scholar 

  28. Price JE, Polyzos A, Zhang RD et al. (1990) Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 51:717–721

    Google Scholar 

  29. Ellison G, Klinowska T, Westwood RF et al. (2002) Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 55(5):294–299

    Article  PubMed  CAS  Google Scholar 

  30. Ross DT, Scherf U, Eisen MB et al. (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235

    Article  PubMed  CAS  Google Scholar 

  31. Sellappan S, Grijalva R, Zhou X et al. (2004) Lineage infedility of MDA-MB-435 cells. Cancer Res 64:3479–3485

    Article  PubMed  CAS  Google Scholar 

  32. Bautista DS, Xuan JW, Hota C et al. (1994) Inhibition of Arg-Gly-Asp (RGD)-mediated cell adhesion to osteopontin by a monoclonal antibody against osteopontin. J Biol Chem 269(37):23280–23285

    PubMed  CAS  Google Scholar 

  33. Christensen B, Nielsen MS, Haselmann KF et al. (2005) Post-translationally modified residues of native osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications. Biochem J 390:285–292

    Article  PubMed  CAS  Google Scholar 

  34. Kon S, Maeda M, Segawa T et al. (2000) Antibodies to different peptides in osteopontin reveal complexities in the various secreted forms. J Cell Biochem 77:487–498

    Article  PubMed  CAS  Google Scholar 

  35. Editorial (2003) Whither RNAi?. Nat Cell Biol 5(6):489–490

    Article  Google Scholar 

  36. Sledz CA, Holko M, de Veer MJ et al. (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5(9):834–839

    Article  PubMed  CAS  Google Scholar 

  37. Naumov GN, MacDonald IC, Weinmeister PM et al. (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62(7):2162–2168

    PubMed  CAS  Google Scholar 

  38. Shevde LA, Samant RS, Goldberg SF et al. (2002) Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res 273(2):229–239

    Article  PubMed  CAS  Google Scholar 

  39. Piyathilake CJ, Frost AR, Manne U et al. (2002) Differential expression of growth factors in squamous cell carcinoma and precancerous lesions of the lung. Clin Cancer Res 8(3):734–744

    PubMed  CAS  Google Scholar 

  40. Chang PL, Chambers AF (2000) Transforming JB6 cells exhibit enhanced integrin-mediated adhesion to osteopontin. J Cell Biochem 78(1):8–23

    Article  PubMed  CAS  Google Scholar 

  41. Furger KA, Allan AL, Wilson SM et al. (2003) Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res 1(11):810–819

    PubMed  CAS  Google Scholar 

  42. Noti JD (2000) Adherence to osteopontin via alphavbeta3 suppresses phorbol ester-mediated apoptosis in MCF-7 breast cancer cells that overexpress protein kinase C-alpha. Int J Oncol 17(6):1237–1243

    PubMed  CAS  Google Scholar 

  43. Takahashi F, Akutagawa S, Fukumoto H et al. (2002) Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. Int J Cancer 98(5):707–712

    Article  PubMed  CAS  Google Scholar 

  44. Hirama M, Takahashi F, Takahashi K et al. (2003) Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett 198(1):107–117

    Article  PubMed  CAS  Google Scholar 

  45. Jessen KA, Liu SY, Tepper CG et al. (2004) Molecular analysis of metastasis in a polyomavirus middle T mouse model: the role of osteopontin. Breast Cancer Res 6(3):R157–R169

    Article  PubMed  CAS  Google Scholar 

  46. Mi Z, Guo H, Wai PY et al. (2004) Differential osteopontin expression in phenotypically distinct subclones of murine breast cancer cells mediates metastatic behavior. J Biol Chem 279(45):46659–46667

    Article  PubMed  CAS  Google Scholar 

  47. Teramoto H, Castellone MD, Malek RL et al. (2004) Autocrine activation of an osteopontin-CD44-Rac pathway enhances invasion and transformation by H-RasV12. Oncogene. Nov 01; doi:10.1038/sj.onc.1208209

  48. Wai PY, Kuo PC (2004) The role of osteopontin in tumor metastasis. J Surg Res 121(2):228–241

    Article  PubMed  CAS  Google Scholar 

  49. Khan SA, Lopez-Chua CA, Zhang J et al. (2002) Soluble osteopontin inhibits apoptosis of adherent endothelial cells deprived of growth factors. J Biol Chem 85(4):728–736

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The Susan G. Komen Breast Cancer Foundation BCTR0402317 (LAS), U.S. Public Health service, CA87728 (DRW), CA89019 (DRW), U.S. Army Medical Research and Materiel Command DAMD-17-02-0541 (DRW), Ontario Cancer Research Network 04-MAY-00089 (AFC) and the National Foundation for Cancer Research. AFC is Canada Research Chair in Oncology. L. A. Shevde was a recipient of a postdoctoral fellowship from the Susan G. Komen Breast Cancer Foundation (PDF 2000-218) and␣ACS-IRG 60-0010-44 and CA13148-31. L. A. Shevde and R.␣S. Samant were both recipients of pilot project grants from the UAB Breast SPORE (CA89019) and R. S. Samant is currently supported by the Susan G. Komen Breast Cancer Foundation (BCTR0503488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalita A. Shevde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevde, L.A., Samant, R.S., Paik, J.C. et al. Osteopontin Knockdown Suppresses Tumorigenicity of Human Metastatic Breast Carcinoma, MDA-MB-435. Clin Exp Metastasis 23, 123–133 (2006). https://doi.org/10.1007/s10585-006-9013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9013-2

Keywords

Navigation