Skip to main content

Advertisement

Log in

Changes in the peripheral blood and bone marrow from untreated advanced breast cancer patients that are associated with the establishment of bone metastases

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Bone metastasis is an incurable complication of breast cancer affecting 70–80 % of advanced patients. It is a multistep process that includes tumour cell mobilisation, intravasation, survival in the circulation, extravasation, migration and proliferation in the bone marrow/bone. Although novel findings demonstrate the bone marrow microenvironment significance in bone metastatic progression, a majority of studies have focused on end-stage disease and little is known about how the pre-metastatic niche arises in the bone marrow/bone tissues. We demonstrated a significant increase in patients’ peripheral blood plasma ability to induce transendothelial migration of MCF-7 cells compared with healthy volunteers. Moreover, high RANKL, MIF and OPG levels in patients’ peripheral blood could play a role in the intravasation, angiogenesis, survival and epithelial–mesenchymal transition of circulating tumour cells. Also, we observed a significant increase in patients’ bone marrow plasma capacity to induce transendothelial migration of MDA-MB231 and MCF-7 cells compared with healthy volunteers. Furthermore, patients’ bone marrow mesenchymal stem cells could control the recruitment of tumour cells, modifying the MCF-7 and MDA-MB231 cell migration. In addition, we found a significantly higher MDA-MB231 cell proliferation when we used patients’ bone marrow plasma compared with healthy volunteers. Interestingly, PDGF-AB, ICAM-1 and VCAM-1 levels in patients’ bone marrow were significantly higher than the values of healthy volunteers, suggesting that they could be involved in the cancer cell extravasation, bone resorption and cancer cell proliferation. We believe that these results can reveal new information about what alterations happen in the bone marrow of advanced breast cancer patients before bone colonisation, changes that create optimal soil for the metastatic cascade progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shimamura T, Amizuka N, Li M, Freitas PH, White JH, Henderson JE, Shingaki S, Nakajima T, Ozawa H (2005) Histological observations on the microenvironment of osteolytic bone metastasis by breast carcinoma cell line. Biomed Res 26:159–172

    Article  CAS  PubMed  Google Scholar 

  2. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol 22:396–403. doi:10.1016/j.semcancer.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  3. van der Pluijm G, Que I, Sijmons B, Buijs JT, Lowik CW, Wetterwald A, Thalmann GN, Papapoulos SE, Cecchini MG (2005) Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 65:7682–7690. doi:65/17/7682

    PubMed  Google Scholar 

  4. Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146. doi:10.1016/j.semcancer.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  5. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573

    Article  Google Scholar 

  6. Yoneda T, Sasaki A, Mundy GR (1994) Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat 32:73–84

    Article  CAS  PubMed  Google Scholar 

  7. Sanderson RD, Yang Y, Suva LJ, Kelly T (2004) Heparan sulfate proteoglycans and heparanase–partners in osteolytic tumor growth and metastasis. Matrix Biol 23:341–352. doi:S0945-053X(04)00100-3

    Article  CAS  PubMed  Google Scholar 

  8. Sosnoski DM, Krishnan V, Kraemer WJ, Dunn-Lewis C, Mastro AM (2012) Changes in cytokines of the bone microenvironment during breast cancer metastasis. Int J Breast Cancer 2012:160265. doi:10.1155/2012/160265

    Article  PubMed Central  PubMed  Google Scholar 

  9. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146. doi:10.1016/j.abb.2008.03.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hofbauer LC, Rachner T, Singh SK (2008) Fatal attraction: why breast cancer cells home to bone. Breast Cancer Res 10:101. doi:10.1186/bcr1848

    Article  PubMed Central  PubMed  Google Scholar 

  11. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, Rubin E, Sarao R, Hojilla CV, Komnenovic V, Kong YY, Schreiber M, Dixon SJ, Sims SM, Khokha R, Wada T, Penninger JM (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692–696. doi:nature04524

    Article  CAS  PubMed  Google Scholar 

  12. Santini D, Perrone G, Roato I, Godio L, Pantano F, Grasso D, Russo A, Vincenzi B, Fratto ME, Sabbatini R, Della Pepa C, Porta C, Del Conte A, Schiavon G, Berruti A, Tomasino RM, Papotti M, Papapietro N, Onetti Muda A, Denaro V, Tonini G (2011) Expression pattern of receptor activator of NFkappaB (RANK) in a series of primary solid tumors and related bone metastases. J Cell Physiol 226:780–784. doi:10.1002/jcp.22402

    Article  CAS  PubMed  Google Scholar 

  13. Azim H, Azim HA Jr (2013) Targeting RANKL in breast cancer: bone metastasis and beyond. Expert Rev Anticancer Ther 13:195–201. doi:10.1586/era.12.177

    Article  CAS  PubMed  Google Scholar 

  14. Bando H, Matsumoto G, Bando M, Muta M, Ogawa T, Funata N, Nishihira J, Koike M, Toi M (2002) Expression of macrophage migration inhibitory factor in human breast cancer: association with nodal spread. Jpn J Cancer Res 93:389–396

    Article  CAS  PubMed  Google Scholar 

  15. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13:587–596. doi:nm1567

    Article  CAS  PubMed  Google Scholar 

  16. Verjans E, Noetzel E, Bektas N, Schutz AK, Lue H, Lennartz B, Hartmann A, Dahl E, Bernhagen J (2009) Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer. BMC Cancer 9:230. doi:10.1186/1471-2407-9-230

    Article  PubMed Central  PubMed  Google Scholar 

  17. Labovsky V, Vallone VB, Martinez LM, Otaegui J, Chasseing NA (2012) Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines. Cancer Cell Int 12:29. doi:10.1186/1475-2867-12-29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Cross SS, Yang Z, Brown NJ, Balasubramanian SP, Evans CA, Woodward JK, Neville-Webbe HL, Lippitt JM, Reed MW, Coleman RE, Holen I (2006) Osteoprotegerin (OPG)—a potential new role in the regulation of endothelial cell phenotype and tumour angiogenesis? Int J Cancer 118:1901–1908. doi:10.1002/ijc.21606

    Article  CAS  PubMed  Google Scholar 

  19. Xu X, Wang B, Ye C, Yao C, Lin Y, Huang X, Zhang Y, Wang S (2008) Overexpression of macrophage migration inhibitory factor induces angiogenesis in human breast cancer. Cancer Lett 261:147–157. doi:10.1016/j.canlet.2007.11.028

    Article  CAS  PubMed  Google Scholar 

  20. Zinonos I, Labrinidis A, Lee M, Liapis V, Hay S, Ponomarev V, Diamond P, Findlay DM, Zannettino AC, Evdokiou A (2011) Anticancer efficacy of Apo2L/TRAIL is retained in the presence of high and biologically active concentrations of osteoprotegerin in vivo. J Bone Miner Res 26:630–643. doi:10.1002/jbmr.244

    Article  CAS  PubMed  Google Scholar 

  21. Lue H, Thiele M, Franz J, Dahl E, Speckgens S, Leng L, Fingerle-Rowson G, Bucala R, Luscher B, Bernhagen J (2007) Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity. Oncogene 26:5046–5059. doi:1210318

    Article  CAS  PubMed  Google Scholar 

  22. Onodera S, Sasaki S, Ohshima S, Amizuka N, Li M, Udagawa N, Irie K, Nishihira J, Koyama Y, Shiraishi A, Tohyama H, Yasuda K (2006) Transgenic mice overexpressing macrophage migration inhibitory factor (MIF) exhibit high-turnover osteoporosis. J Bone Miner Res 21:876–885. doi:10.1359/jbmr.060310

    Article  CAS  PubMed  Google Scholar 

  23. Soria G, Ofri-Shahak M, Haas I, Yaal-Hahoshen N, Leider-Trejo L, Leibovich-Rivkin T, Weitzenfeld P, Meshel T, Shabtai E, Gutman M, Ben-Baruch A (2011) Inflammatory mediators in breast cancer: coordinated expression of TNFalpha & IL-1beta with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer 11:130. doi:10.1186/1471-2407-11-130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. van der Pluijm G (2011) Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone 48:37–43. doi:10.1016/j.bone.2010.07.023

    Article  PubMed  Google Scholar 

  25. Wang J, Loberg R, Taichman RS (2006) The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25:573–587. doi:10.1007/s10555-006-9019-x

    Article  CAS  PubMed  Google Scholar 

  26. Miles FL, Pruitt FL, van Golen KL, Cooper CR (2008) Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25:305–324. doi:10.1007/s10585-007-9098-2

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi H, Boelte KC, Lin PC (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14:377–386

    Article  CAS  PubMed  Google Scholar 

  28. Strell C, Entschladen F (2008) Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 6:10. doi:10.1186/1478-811X-6-10

    Article  PubMed Central  PubMed  Google Scholar 

  29. Strell C, Lang K, Niggemann B, Zaenker KS, Entschladen F (2007) Surface molecules regulating rolling and adhesion to endothelium of neutrophil granulocytes and MDA-MB-468 breast carcinoma cells and their interaction. Cell Mol Life Sci 64:3306–3316. doi:10.1007/s00018-007-7402-6

    Article  CAS  PubMed  Google Scholar 

  30. Li DM, Feng YM (2011) Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat 128:7–21. doi:10.1007/s10549-011-1499-x

    Article  CAS  PubMed  Google Scholar 

  31. Zhang GJ, Adachi I (1999) Serum levels of soluble intercellular adhesion molecule-1 and E-selectin in metastatic breast carcinoma: correlations with clinicopathological features and prognosis. Int J Oncol 14:71–77

    PubMed  Google Scholar 

  32. Chen Q, Massague J (2012) Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin Cancer Res 18:5520–5525. doi:10.1158/1078-0432.CCR-11-2904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. O’Hanlon DM, Fitzsimons H, Lynch J, Tormey S, Malone C, Given HF (2002) Soluble adhesion molecules (E-selectin, ICAM-1 and VCAM-1) in breast carcinoma. Eur J Cancer 38:2252–2257. doi:S0959804902002186

    Article  PubMed  Google Scholar 

  34. Silva HC, Garcao F, Coutinho EC, De Oliveira CF, Regateiro FJ (2006) Soluble VCAM-1 and E-selectin in breast cancer: relationship with staging and with the detection of circulating cancer cells. Neoplasma 53:538–543

    CAS  PubMed  Google Scholar 

  35. Simons D, Grieb G, Hristov M, Pallua N, Weber C, Bernhagen J, Steffens G (2011) Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment. J Cell Mol Med 15:668–678. doi:10.1111/j.1582-4934.2010.01041.x

    Article  CAS  PubMed  Google Scholar 

  36. Asare Y, Schmitt M, Bernhagen J (2013) The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost 109:391–398. doi:10.1160/TH12-11-0831

    Article  CAS  PubMed  Google Scholar 

  37. Brown LF, Detmar M, Claffey K, Nagy JA, Feng D, Dvorak AM, Dvorak HF (1997) Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS 79:233–269

    CAS  PubMed  Google Scholar 

  38. Lev DC, Kim SJ, Onn A, Stone V, Nam DH, Yazici S, Fidler IJ, Price JE (2005) Inhibition of platelet-derived growth factor receptor signaling restricts the growth of human breast cancer in the bone of nude mice. Clin Cancer Res 11:306–314. doi:11/1/306

    CAS  PubMed  Google Scholar 

  39. Joensuu K, Heikkila P, Andersson LC (2008) Tumor dormancy: elevated expression of stanniocalcins in late relapsing breast cancer. Cancer Lett 265:76–83. doi:10.1016/j.canlet.2008.02.022

    Article  CAS  PubMed  Google Scholar 

  40. Neville-Webbe HL, Cross NA, Eaton CL, Nyambo R, Evans CA, Coleman RE, Holen I (2004) Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis. Breast Cancer Res Treat 86:269–279. doi:5272468

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Y, Zhang B (2008) TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5. Mol Cancer Res 6:1861–1871. doi:10.1158/1541-7786.MCR-08-0313

    Article  CAS  PubMed  Google Scholar 

  42. Sanlioglu AD, Dirice E, Elpek O, Korcum AF, Ozdogan M, Suleymanlar I, Balci MK, Griffith TS, Sanlioglu S (2009) High TRAIL death receptor 4 and decoy receptor 2 expression correlates with significant cell death in pancreatic ductal adenocarcinoma patients. Pancreas 38:154–160. doi:10.1097/MPA.0b013e31818db9e3

    Article  CAS  PubMed  Google Scholar 

  43. Van Poznak C, Cross SS, Saggese M, Hudis C, Panageas KS, Norton L, Coleman RE, Holen I (2006) Expression of osteoprotegerin (OPG), TNF related apoptosis inducing ligand (TRAIL), and receptor activator of nuclear factor kappaB ligand (RANKL) in human breast tumours. J Clin Pathol 59:56–63. doi:59/1/56

    Article  PubMed  Google Scholar 

  44. Lee RH, Yoon N, Reneau JC, Prockop DJ (2012) Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell 11:825–835. doi:10.1016/j.stem.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  45. Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, ten Dijke P, van der Pluijm G (2007) TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clin Exp Metastasis 24:609–617. doi:10.1007/s10585-007-9118-2

    Article  CAS  PubMed  Google Scholar 

  46. Buijs JT, Juarez P, Guise TA (2011) Therapeutic strategies to target TGF-beta in the treatment of bone metastases. Curr Pharm Biotechnol 12:2121–2137. doi:BSP/CPB/E-Pub/000235-12-16

    Article  CAS  PubMed  Google Scholar 

  47. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428. doi:10.1172/JCI39104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bonnomet A, Brysse A, Tachsidis A, Waltham M, Thompson EW, Polette M, Gilles C (2010) Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia 15:261–273. doi:10.1007/s10911-010-9174-0

    Article  PubMed  Google Scholar 

  49. Palafox M, Ferrer I, Pellegrini P, Vila S, Hernandez-Ortega S, Urruticoechea A, Climent F, Soler MT, Munoz P, Vinals F, Tometsko M, Branstetter D, Dougall WC, Gonzalez-Suarez E (2012) RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res 72:2879–2888. doi:10.1158/0008-5472.CAN-12-0044

    Article  CAS  PubMed  Google Scholar 

  50. Funamizu N, Hu C, Lacy C, Schetter A, Zhang G, He P, Gaedcke J, Ghadimi MB, Ried T, Yfantis HG, Lee DH, Subleski J, Chan T, Weiss JM, Back TC, Yanaga K, Hanna N, Alexander HR, Maitra A, Hussain SP (2012) Macrophage migration inhibitory factor induces epithelial to mesenchymal transition, enhances tumor aggressiveness and predicts clinical outcome in resected pancreatic ductal adenocarcinoma. Int J Cancer doi. doi:10.1002/ijc.27736

    Google Scholar 

  51. Mohsin SK, Weiss H, Havighurst T, Clark GM, Berardo M, le Roanh D, To TV, Qian Z, Love RR, Allred DC (2004) Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. Mod Pathol 17:1545–1554. doi:10.1038/modpathol.3800229

    Article  CAS  PubMed  Google Scholar 

  52. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love R, Mangu PB, McShane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep FC, Taube S, Torlakovic EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB, Wittliff JL, Wolff AC (2010) American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28:2784–2795. doi:10.1200/JCO.2009.25.6529

    Article  PubMed  Google Scholar 

  53. Chirgwin JM (2012) The stem cell niche as a pharmaceutical target for prevention of skeletal metastases. Anticancer Agents Med Chem 12:187–193. doi:BSP/ACAMC/E-Pub/00258

    Article  CAS  PubMed  Google Scholar 

  54. Hofer EL, Labovsky V, La Russa V, Vallone VF, Honegger AE, Belloc CG, Wen HC, Bordenave RH, Bullorsky EO, Feldman L, Chasseing NA (2010) Mesenchymal stromal cells, colony-forming unit fibroblasts, from bone marrow of untreated advanced breast and lung cancer patients suppress fibroblast colony formation from healthy marrow. Stem Cells Dev 19:359–370. doi:10.1089/scd 2008.0375

    Article  CAS  PubMed  Google Scholar 

  55. Corcoran KE, Trzaska KA, Fernandes H, Bryan M, Taborga M, Srinivas V, Packman K, Patel PS, Rameshwar P (2008) Mesenchymal stem cells in early entry of breast cancer into bone marrow. PLoS One 3:e2563. doi:10.1371/journal.pone.0002563

    Article  PubMed Central  PubMed  Google Scholar 

  56. Lorusso G, Ruegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130:1091–1103. doi:10.1007/s00418-008-0530-8

    Article  CAS  PubMed  Google Scholar 

  57. Kindle L, Rothe L, Kriss M, Osdoby P, Collin-Osdoby P (2006) Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+monocytes that develop with RANKL into functional osteoclasts. J Bone Miner Res 21:193–206. doi:10.1359/JBMR.051027

    Article  CAS  PubMed  Google Scholar 

  58. Monteiro AC, Leal AC, Goncalves-Silva T, Mercadante AC, Kestelman F, Chaves SB, Azevedo RB, Monteiro JP, Bonomo A (2013) T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One 8:e68171. doi:10.1371/journal.pone.0068171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Paduch R, Walter-Croneck A, Zdzisinska B, Szuster-Ciesielska A, Kandefer-Szerszen M (2005) Role of reactive oxygen species (ROS), metalloproteinase-2 (MMP-2) and interleukin-6 (IL-6) in direct interactions between tumour cell spheroids and endothelial cell monolayer. Cell Biol Int 29:497–505. doi:S1065-6995(05)00049-1

    Article  CAS  PubMed  Google Scholar 

  60. de Cavanagh EM, Honegger AE, Hofer E, Bordenave RH, Bullorsky EO, Chasseing NA, Fraga C (2002) Higher oxidation and lower antioxidant levels in peripheral blood plasma and bone marrow plasma from advanced cancer patients. Cancer 94:3247–3251. doi:10.1002/cncr.10611

    Article  PubMed  Google Scholar 

  61. Gho YS, Kleinman HK, Sosne G (1999) Angiogenic activity of human soluble intercellular adhesion molecule-1. Cancer Res 59:5128–5132

    CAS  PubMed  Google Scholar 

  62. Lawson C, Wolf S (2009) ICAM-1 signaling in endothelial cells. Pharmacol Rep 61:22–32

    CAS  PubMed  Google Scholar 

  63. Goldstein RH, Reagan MR, Anderson K, Kaplan DL, Rosenblatt M (2010) Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res 70:10044–10050. doi:10.1158/0008-5472.CAN-10-1254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Dirks RP, Bloemers HP (1995) Signals controlling the expression of PDGF. Mol Biol Rep 22:1–24

    Article  CAS  PubMed  Google Scholar 

  65. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    CAS  PubMed  Google Scholar 

  66. Yokoyama Y, Mori S, Hamada Y, Hieda M, Kawaguchi N, Shaker M, Tao Y, Yoshidome K, Tsujimoto M, Matsuura N (2011) Platelet-derived growth factor regulates breast cancer progression via beta-catenin expression. Pathobiology 78:253–260. doi:10.1159/000328061

    Article  CAS  PubMed  Google Scholar 

  67. Westphal JR, Van’t Hullenaar R, Peek R, Willems RW, Crickard K, Crickard U, Askaa J, Clemmensen I, Ruiter DJ, De Waal RM (2000) Angiogenic balance in human melanoma: expression of VEGF, bFGF, IL-8, PDGF and angiostatin in relation to vascular density of xenografts in vivo. Int J Cancer 86:768–776. doi:10.1002/(SICI)1097-0215(20000615)86:6<768:AID-IJC3>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  68. Tsirakis G, Pappa CA, Kanellou P, Stratinaki MA, Xekalou A, Psarakis FE, Sakellaris G, Alegakis A, Stathopoulos EN, Alexandrakis MG (2012) Role of platelet-derived growth factor-AB in tumour growth and angiogenesis in relation with other angiogenic cytokines in multiple myeloma. Hematol Oncol 30:131–136. doi:10.1002/hon.1014

    Article  CAS  PubMed  Google Scholar 

  69. Chen YC, Sosnoski DM, Mastro AM (2010) Breast cancer metastasis to the bone: mechanisms of bone loss. Breast Cancer Res 12:215. doi:10.1186/bcr2781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. David Roodman G (2003) Role of stromal-derived cytokines and growth factors in bone metastasis. Cancer 97:733–738. doi:10.1002/cncr.11148

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Z, Chen J, Jin D (1998) Platelet-derived growth factor (PDGF)-BB stimulates osteoclastic bone resorption directly: the role of receptor beta. Biochem Biophys Res Commun 251:190–194. doi:S0006-291X(98)99412-8

    Article  CAS  PubMed  Google Scholar 

  72. Fernandez Vallone VB, Hofer EL, Choi H, Bordenave RH, Batagelj E, Feldman L, La Russa V, Caramutti D, Dimase F, Labovsky V, Martinez LM, Chasseing NA (2013) Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis. Clin Exp Metastasis 30:317–332. doi:10.1007/s10585-012-9539-4

    Article  PubMed  Google Scholar 

  73. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q, Yuan M, Yan J, Hua Y, Tiede BJ, Haffty BG, Pantel K, Massague J, Kang Y (2011) VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell 20:701–714. doi:10.1016/j.ccr.2011.11.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Schneider JG, Amend SR, Weilbaecher KN (2011) Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 48:54–65. doi:10.1016/j.bone.2010.09.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Bloemen V, de Vries TJ, Schoenmaker T, Everts V (2009) Intercellular adhesion molecule-1 clusters during osteoclastogenesis. Biochem Biophys Res Commun 385:640–645. doi:10.1016/j.bbrc.2009.05.145

    Article  CAS  PubMed  Google Scholar 

  76. Fernandes JC, Shi Q, Benderdour M, Lajeunesse D, Lavigne P (2008) An active role for soluble and membrane intercellular adhesion molecule-1 in osteoclast activity in vitro. J Bone Miner Metab 26:543–550. doi:10.1007/s00774-008-0866-0

    Article  CAS  PubMed  Google Scholar 

  77. Takahashi M, Furihata M, Akimitsu N, Watanabe M, Kaul S, Yumoto N, Okada T (2008) A highly bone marrow metastatic murine breast cancer model established through in vivo selection exhibits enhanced anchorage-independent growth and cell migration mediated by ICAM-1. Clin Exp Metastasis 25:517–529. doi:10.1007/s10585-008-9163-5

    Article  CAS  PubMed  Google Scholar 

  78. Rosette C, Roth RB, Oeth P, Braun A, Kammerer S, Ekblom J, Denissenko MF (2005) Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis 26:943–950. doi:bgi070

    Article  CAS  PubMed  Google Scholar 

  79. Cross SS, Harrison RF, Balasubramanian SP, Lippitt JM, Evans CA, Reed MW, Holen I (2006) Expression of receptor activator of nuclear factor kappabeta ligand (RANKL) and tumour necrosis factor related, apoptosis inducing ligand (TRAIL) in breast cancer, and their relations with osteoprotegerin, oestrogen receptor, and clinicopathological variables. J Clin Pathol 59:716–720. doi:jcp.2005.030031

    Article  CAS  PubMed  Google Scholar 

  80. Kapoor P, Suva LJ, Welch DR, Donahue HJ (2008) Osteoprotegrin and the bone homing and colonization potential of breast cancer cells. J Cell Biochem 103:30–41. doi:10.1002/jcb.21382

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank Marcela F. Bolontrade PhD (Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina) for providing HMEC-1 cells. This work was supported by the Grant PIP2011 from the National Council of Scientific and Technical Research (CONICET), Argentina; Grant PICT2006 from the National Agency for Science and Technology, Argentina; Grant 2006–2008, 2009–2011 and 2011–2013 from the Roemmers Foundation, Argentina; and the Institute for Regenerative Medicine, Texas A&M Health Science Center, Temple, Texas, USA.

Ethical standards

All individuals gave consent prior to participating in these studies. The investigations were approved by the IBYME Ethical Committee and performed in accordance with the principles of the Helsinki Declaration.

Disclosure

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma Alejandra Chasseing.

Additional information

Leandro Marcelo Martinez and Valeria Beatriz Fernández Vallone have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 7929 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, L.M., Vallone, V.B.F., Labovsky, V. et al. Changes in the peripheral blood and bone marrow from untreated advanced breast cancer patients that are associated with the establishment of bone metastases. Clin Exp Metastasis 31, 213–232 (2014). https://doi.org/10.1007/s10585-013-9622-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9622-5

Keywords

Navigation