Skip to main content
Log in

Malleable applications for scalable high performance computing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Iterative applications are known to run as slow as their slowest computational component. This paper introduces malleability, a new dynamic reconfiguration strategy to overcome this limitation. Malleability is the ability to dynamically change the data size and number of computational entities in an application. Malleability can be used by middleware to autonomously reconfigure an application in response to dynamic changes in resource availability in an architecture-aware manner, allowing applications to optimize the use of multiple processors and diverse memory hierarchies in heterogeneous environments.

The modular Internet Operating System (IOS) was extended to reconfigure applications autonomously using malleability. Two different iterative applications were made malleable. The first is used in astronomical modeling, and representative of maximum-likelihood applications was made malleable in the SALSA programming language. The second models the diffusion of heat over a two dimensional object, and is representative of applications such as partial differential equations and some types of distributed simulations. Versions of the heat application were made malleable both in SALSA and MPI. Algorithms for concurrent data redistribution are given for each type of application. Results show that using malleability for reconfiguration is 10 to 100 times faster on the tested environments. The algorithms are also shown to be highly scalable with respect to the quantity of data involved. While previous work has shown the utility of dynamically reconfigurable applications using only computational component migration, malleability is shown to provide up to a 15% speedup over component migration alone on a dynamic cluster environment.

This work is part of an ongoing research effort to enable applications to be highly reconfigurable and autonomously modifiable by middleware in order to efficiently utilize distributed environments. Grid computing environments are becoming increasingly heterogeneous and dynamic, placing new demands on applications’ adaptive behavior. This work shows that malleability is a key aspect in enabling effective dynamic reconfiguration of iterative applications in these environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agbaria, A., Friedman, R.: Starfish: Fault-tolerant dynamic MPI programs on clusters of workstations. In: Proceedings of The Eighth IEEE International Symposium on High Performance Distributed Computing, p. 31. IEEE Computer Society (1999)

  2. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press (1986)

  3. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home: an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)

    Article  Google Scholar 

  4. Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I., Gannon, D., Johnson, L., Kennedy, K., Kesselman, C., Mellor-Crummey, J., Reed, D., Torczon, L., Wolski, R.: The GrADS project: Software support for high-level grid application development. Int. J. High-Perform. Comput. Appl. 15(4), 327–344 (2002)

    Article  Google Scholar 

  5. Bhandarkar, M.A., Kale, L.V., de Sturler, E., Hoeflinger, J.: Adaptive load balancing for MPI programs. In: Proceedings of the International Conference on Computational Science—Part II, pp. 108–117. Springer (2001)

  6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS ’94), Santa Fe, New Mexico, November 1994, pp. 356–368

  7. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for distributed resource sharing. In: 10th IEEE International Symposium on High-Performance Distributed Computing (HPDC-10), August 2001

  8. Desell, T., Maghraoui, K.E., Varela, C.: Load balancing of autonomous actors over dynamic networks. In: Proceedings of the Hawaii International Conference on System Sciences, HICSS-37 Software Technology Track, January 2004, pp. 1–10

  9. Foster, I., Kesselman, C.: The Globus project: A status report. In: Antonio, J. (ed.) Proceedings of the Seventh Heterogeneous Computing Workshop (HCW ’98), pp. 4–18. IEEE Computer Society (1998)

  10. Huang, C., Lawlor, O., Kalé, L.V.: Adaptive MPI. In: Proceedings of the 16th International Workshop on Languages and Compilers for Parallel Computing (LCPC 03), College Station, Texas, October 2003

  11. Lan, Z., Taylor, V.E., Bryan, G.: Dynamic load balancing of SAMR applications on distributed systems. Sci. Progr. 10(4), 319–328 (2002)

    Google Scholar 

  12. Litzkow, M., Livny, M., Mutka, M.: Condor—a hunter of idle workstations. In: Proceedings of the 8th International Conference of Distributed Computing Systems, June 1988, pp. 104–111

  13. Maghraoui, K.E., Flaherty, J., Szymanski, B., Teresco, J., Varela, C.: Adaptive computation over dynamic and heterogeneous networks. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Wasniewski, J. (eds.) Proc. of the Fifth International Conference on Parallel Processing and Applied Mathematics (PPAM’2003), Czestochowa, Poland, September 2003. Lecture Notes in Computer Science, vol. 3019, pp. 1083–1090. Springer, Berlin (2003)

    Google Scholar 

  14. Maghraoui, K.E., Desell, T., Szymanski, B.K., Teresco, J.D., Varela, C.A.: Towards a middleware framework for dynamically reconfigurable scientific computing. In: Grandinetti, L. (ed.) Grid Computing and New Frontiers of High Performance Processing. Elsevier (2005)

  15. Maghraoui, K.E., Desell, T.J., Szymanski, B.K., Varela, C.A.: The internet operating system: Middleware for adaptive distributed computing. Int. J. High Perform. Comput. Appl. (IJHPCA) 10(4), 467–480 (2006), Special Issue on Scheduling Techniques for Large-Scale Distributed Platforms

    Article  Google Scholar 

  16. Maghraoui, K.E., Szymanski, B., Varela, C.: An architecture for reconfigurable iterative mpi applications in dynamic environments. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Wasniewski, J. (eds.) Proc. of the Sixth International Conference on Parallel Processing and Applied Mathematics (PPAM’2005), ser. LNCS, no. 3911, Poznan, Poland, September 2005, pp. 258–271

  17. Message Passing Interface Forum, MPI: A message-passing interface standard, Int. J. Supercomput. Appl. High Perform. Comput. 8(3/4), 159–416 (1994)

    Google Scholar 

  18. Pande, V., et al.: Atomistic protein folding simulations on the submillisecond timescale using worldwide distributed computing. Biopolymers 68(1), 91–109 (2002), Peter Kollman Memorial Issue

    Article  Google Scholar 

  19. Purnell, J., Magdon-Ismail, M., Newberg, H.: A probabilistic approach to finding geometric objects in spatial datasets of the Milky Way. In: Proceedings of the 15th International Symposium on Methodoligies for Intelligent Systems (ISMIS 2005), Saratoga Springs, NY, USA, May 2005, pp. 475–484. Springer (2005)

  20. Sievert, O., Casanova, H.: A simple MPI process swapping architecture for iterative applications. Int. J. High Perform. Comput. Appl. 18(3), 341–352 (2004)

    Article  Google Scholar 

  21. Stellner, G.: Cocheck: Checkpointing and process migration for MPI. In: Proceedings of the 10th International Parallel Processing Symposium, pp. 526–531. IEEE Computer Society (1996)

  22. Szalay, A., Gray, J.: The world-wide telescope. Science 293, 2037 (2001)

    Article  Google Scholar 

  23. Taura, K., Kaneda, K., Endo, T.: Phoenix: a parallel programming model for accommodating dynamically joininig/leaving resources. In: Proc. of PPoPP, pp. 216–229. ACM (2003)

  24. Vadhiyar, S.S., Dongarra, J.J.: SRS—a framework for developing malleable and migratable parallel applications for distributed systems. Parallel Process. Lett. 13(2), 291–312 (2003)

    Article  Google Scholar 

  25. Varela, C., Agha, G.: Programming dynamically reconfigurable open systems with SALSA. ACM SIGPLAN Not. OOPSLA’2001 Intriguing Techn. Track Proc. 36(12), 20–34 (2001), http://www.cs.rpi.edu/~cvarela/oopsla2001.pdf

    Google Scholar 

  26. Varela, C.A., Ciancarini, P., Taura, K.: Worldwide computing: Adaptive middleware and programming technology for dynamic Grid environments. Sci. Program. J. 13(4), 255–263 (2005), Guest Editorial

    Google Scholar 

  27. Wolski, R., Spring, N.T., Hayes, J.: The Network Weather Service: A distributed resource performance forecasting service for metacomputing. Future Gener. Comput. Syst. 15(5–6), 757–768 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Desell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desell, T., Maghraoui, K.E. & Varela, C.A. Malleable applications for scalable high performance computing. Cluster Comput 10, 323–337 (2007). https://doi.org/10.1007/s10586-007-0032-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-007-0032-9

Keywords

Navigation