Skip to main content
Log in

Outage probability of SSTS for distributed antenna systems over Rayleigh fading channels in multi-cell environment

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In this paper, downlink outage probability for distributed antenna systems (DAS) in multicell environment is proposed, while based on maximum desired signal criterion, a single selection transmission scheme (SSTS) is proposed. Usually, adopting central limit theorem (CLT) method, the component of interference plus noise is considered as a fixed-variance Gaussian random variable in most papers. However, the aforementioned method does not reflect the effect of short-term fading on interference and its usage is in the constraints of restrictive conditions. To relax the constraints, non-central limit theorem (NCLT) is introduced, which treats the variance of interference plus noise as a changeable-variance random variable influenced by short-term fading. It is assumed that channels are independent identical Rayleigh fading with propagation path-loss, and the closed-form expression of outage probability for DAS is derived. Finally, simulation results demonstrate the validity of theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim, H., Lee, S.R., Song, C., Lee, K.J., Lee, I.: Optimal power allocation scheme for energy efficiency maximization in distributed antenna systems. IEEE Transact. Commun. 63(2), 431–440 (2015)

    Article  Google Scholar 

  2. Heath, R., Peters, S., Wang, Y., Zhang, J.: A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Commun. Mag. 51(4), 161–167 (2013)

    Article  Google Scholar 

  3. Feng, W., Ge, N., Lu, J.: Hierarchical transmission optimization for massively dense distributed antenna systems. IEEE Commun. Lett. 19(4), 673–676 (2015)

    Article  Google Scholar 

  4. You, X.H., Wang, D.M., Sheng, B., Gao, X.Q., Zhao, X.S.: Cooperative distributed antenna systems for mobile communications [coordinated and distributed MIMO]. IEEE Wireless Commun. 17, 35–43 (2010)

    Article  Google Scholar 

  5. Lee, S.-R., Moon, S.-H., Kong, H.-B., Lee, I.: Optimal beamforming schemes and its capacity behavior for downlink distributed antenna systems. IEEE Trans. Wireless Commun. 12(6), 2578–2587 (2013)

    Article  Google Scholar 

  6. Ren, H., Liu, N., Pan, C., He, C.: Energy efficiency optimization for mimo distributed antenna systems. IEEE Transact. Veh. Technol. 66(3), 2276–2288 (2017)

    Article  Google Scholar 

  7. Saleh, A., Rustako, A.J., Roman, R.S.: Distributed antennas for indoor radio communications. IEEE Trans. Commun. 35(12), 1245–1251 (1987)

    Article  Google Scholar 

  8. Choi, W., Andrews, J.G.: Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE Trans. Wireless Commun. 6(1), 69–73 (2007)

    Article  Google Scholar 

  9. Zhou, S., Zhao, M., Xu, X., Wang, J.: Distributed wireless communication systems: a new architecture for future public wireless access. IEEE Commun. Mag. 41(3), 108–113 (2003)

    Article  Google Scholar 

  10. Zhu, H.L.: Performance comparison between distributed antenna and microcellular systems. IEEE J. Sel. Areas Commun. 29(6), 1151–1163 (2011)

    Article  Google Scholar 

  11. Nosratinia, A., Hunter, T.E., Hedayat, A.: Cooperative communication in wireless networks. IEEE Commun. Mag. 42(10), 74–80 (2004)

    Article  Google Scholar 

  12. Katranaras, E., Imran, M.A., Tzaras, C.: Uplink capacity of a variable density cellular system with multicell processing. IEEE Trans. Commun. 57(7), 2098–2108 (2009)

    Article  Google Scholar 

  13. You, X., Wang, D., Zhu, P., Sheng, B.: Cell edge performance of cellular mobile systems. IEEE J. Sel. Areas Commun. 29(6), 1139–1150 (2011)

    Article  Google Scholar 

  14. Park, J., Song, E., Sung, W.: Capacity analysis for distributed antenna systems using cooperative transmission schemes in fading channels. IEEE Trans. Wireless Commun. 8(2), 586–592 (2009)

    Article  Google Scholar 

  15. Liu, Y.X., Liu, J., Chen, H., Zheng, L.N., Zhang, G.W., Guo, W.D.: Downlink performance of distributed antenna systems in multicell environment. IET Commun. 5(15), 2141–2148 (2011)

    Article  MathSciNet  Google Scholar 

  16. Choi, W., Andrews, J.G.: Theoretical limits of cellular systems with distributed antennas. In: Hu, H.L., Zhang, Y., Luo, J.J. (eds.) Distributed Antenna Systems: Open Architecture for Future Wireless Communications, pp. 65–86. Auerbach Press, Berlin (2007)

    Google Scholar 

  17. Vereecken, W., Heddeghem, W.V., Deruyck, M., Puype, B., Lannoo, B., Joseph, W., Colle, D., Martens, L., Demeester, P.: Power consumption in telecommunication networks: overview and reduction strategies. IEEE Commun. Mag. 49(3), 62–69 (2011)

    Article  Google Scholar 

  18. Liu, Y.X., Liu, J., Guo, W.D., Chen, H., Zheng, D., Zhang, G.W.: Downlink performance analysis of distributed antenna systems. In: Proceedings of the IEEE International Conference on Wireless Communication and Signal Processing, pp. 1–5. Nanjing (2011)

  19. Liu, Y.X., Chen, P., Ouyang, H., Fang, H.W.: Bit error rate of SSTS for downlink distributed antenna systems in multicell environment. Wireless Pers. Commun. 31(3), 1063–1078 (2015)

    Article  Google Scholar 

  20. Wyner, A.: Shannon-theoretic approach to a Gaussian cellular multiple-access channel. IEEE Trans. Inf. Theory 40(6), 1713–1727 (1994)

    Article  MathSciNet  Google Scholar 

  21. Zhang, H., Dai, L., Xiao, L., Yao, Y.: Spectral efficiency of distributed antenna system with random antenna layout. Electron. Lett. 39(6), 495–496 (2003)

    Article  Google Scholar 

  22. Wang, X., Zhu, P., Chen, M.: Antenna location design for generalized distributed antenna systems. IEEE Commun. Lett. 13(5), 315–317 (2009)

    Article  Google Scholar 

  23. Zhang T., Zhang C., Cuthbert L., Chen Y.: Energy efficient antenna deployment design scheme in distributed antenna systems. In: Proceedings of the IEEE International 72nd Vehicular Techology Conference, pp. 1–5. Spring (VTC 2010-Fall), Ottawa, (2010)

  24. Zhang W., Diao C., Zhao M., Chen M.: Impact of path loss exponents on antenna location design for GDAS. In: Proceedings of the IEEE International 75nd Vehicular Techology Conference, pp. 1–5. Spring VTC 2012-Spring, Yokohama (2012)

  25. Chen, H.M., Wang, J.B., Chen, M.: Outage performance of distributed antenna systems over shadowed Nakagami-m fading channels. Eur. Trans. Telecommun. 20(5), 531–535 (2009)

    Article  Google Scholar 

  26. Chen, H., Liu, J., Zheng, L.N., Zhai, C., Zhou, Y.: Approximate SEP analysis for DF cooperative networks with opportunistic relaying. IEEE Signal Process. Lett. 17(9), 777–780 (2010)

    Article  Google Scholar 

  27. Simon, M.K., Alouini, M.S.: Digital Communication Over Fading Channels: A Unified Approach to Performance Analysis, pp. 99–140. Wiley, New Jersey (2000)

    Book  Google Scholar 

  28. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products. Academic Press, New York (2003)

    MATH  Google Scholar 

  29. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitong Lv.

Appendices

Appendix A: derivation of Eq. (10)

$$\begin{aligned}&\Pr \left( {\gamma>\gamma _{th} } \right) \nonumber \\&\quad =\Delta \Pr \left( {\frac{z_{\max } }{L_{q,2} P_{q,2} \left| {h_{q,2} } \right| ^{2}+L_{l,3} P_{l,3} \left| {h_{l,3} } \right| ^{2}+\sigma _n^2 /S_s }>\gamma _{th} } \right) \nonumber \\&\quad =\int _{t_2 =0}^\infty {\int _{t_3 =0}^\infty {\Pr \left( {z_{\max } >\gamma _{th} \left( {t_2 +t_3 +\sigma _n^2 /S_s } \right) } \right) } }\nonumber \\&\times \exp \left( {\frac{-t_2 }{L_{q,2} P_{q,2} }} \right) \exp \left( {\frac{-t_3 }{L_{l,3} P_{l,3} }} \right) dt_2 dt_3 \nonumber \\&\quad =\Delta \sum _{u=1}^{\left| D \right| } {\left( {-1} \right) ^{u-1}}\sum _{u=1}^{\left( \left( {\mathop {\left| D \right| }\limits _u } \right) \right) }\int _{t_2 =0}^\infty \int _{t_3 =0}^\infty \exp \left( -\lambda _{uv} \gamma _{th} \right. \nonumber \\&\quad \left. \left( {t_2 +t_3 +\sigma _n^2 /S_s } \right) \right) \nonumber \\&\times \exp \left( {\frac{-t_2 }{L_{q,2} P_{q,2} }} \right) \exp \left( {\frac{-t_3 }{L_{l,3} P_{l,3} }} \right) dt_2 dt_3 \nonumber \\&\quad =\Delta \sum _{u=1}^{\left| D \right| } {\left( {-1} \right) ^{u-1}} \nonumber \\&\times \sum _{u=1}^{\left( \left( {\mathop {\left| D \right| }\limits _u } \right) \right) } \exp \left( {-\lambda _{uv} \gamma _{th} \sigma _n^2 /S_s } \right) \nonumber \\&\quad \int _{t_2 =0}^\infty {\int _{t_3 =0}^\infty {\hbox {!`}\exp \left( {\frac{-\lambda _{uv} \gamma _{th} L_{q,2} P_{q,2} -1}{L_{q,2} P_{q,2} }} \right) } } \nonumber \\&\quad \times \exp \left( {\frac{-\lambda _{uv} \gamma _{th} L_{l,3} P_{l,3} -1}{L_{l,3} P_{l,3} }t_3 } \right) dt_2 dt_3 \nonumber \\&\quad =\Delta \sum _{u=1}^{\left| D \right| } {\left( {-1} \right) ^{u-1}} \sum _{u=1}^{\left( \left( {\mathop {\left| D \right| }\limits _u } \right) \right) } {\exp \left( {-\lambda _{uv} \gamma _{th} \sigma _n^2 /S_s } \right) } \nonumber \\&\times \left[ {\frac{L_{q,2} P_{q,2} }{\lambda _{uv} \gamma _{th} L_{q,2} P_{q,2} +1}\frac{L_{l,3} P_{l,3} }{\lambda _{uv} \gamma _{th} L_{l,3} P_{l,3} +1}} \right] \nonumber \\&\quad =\Delta \sum _{u=1}^{\left| D \right| } {\left( {-1} \right) ^{u-1}} \sum _{u=1}^{\left( \left( {\mathop {\left| D \right| }\limits _u } \right) \right) } {\exp \left( {-\lambda _{uv} \gamma _{th} \sigma _n^2 /S_s } \right) } \nonumber \\&\quad \left( {\frac{1}{\lambda _{uv} \gamma _{th} L_{q,2} P_{q,2} +1}\frac{1}{\lambda _{uv} \gamma _{th} L_{l,3} P_{l,3} +1}} \right) \end{aligned}$$
(17)
$$\begin{aligned} where{\begin{array}{ll} &{} \Delta \\ \end{array} }=\frac{1}{L_{q,2} P_{q,2} }\frac{1}{L_{l,3} P_{l,3} } \end{aligned}$$

Appendix B: Gauss-Hermite quadrature

The Gauss-Hermite formula is expressed as [29]:

$$\begin{aligned} \int _{-\infty }^{+\infty } {\exp \left( {-x^{2}} \right) } f\left( x \right) dx= & {} \sum _{i=1}^n {H_i } f\left( {x_i } \right) +R_n\nonumber \\\simeq & {} \sum _{i=1}^n {H_i } f\left( {x_i } \right) \end{aligned}$$
(18)

where n is the order of Hermite polynomial (the number of sample points utilized for the approximation). The value \(x_{i}\) is the roots of the Hermite polynomial\(H_n \left( x \right) {\begin{array}{ll} &{} {\left( {i=1,\cdots ,n} \right) } \\ \end{array} }\) and the associated weights \(H_{i}\) are given as:

$$\begin{aligned} H_i =\frac{2^{n-1}n!\sqrt{\pi }}{n^{2}\left[ {H_{n-1} \left( {x_i } \right) } \right] ^{2}} \end{aligned}$$
(19)

The Hermite polynomial \(H_n \left( x \right) \)is written as [28]:

$$\begin{aligned} \begin{array}{l} H_n \left( x \right) =\left( {-1} \right) ^{n}\exp \left( {x^{2}} \right) \frac{d^{n}}{dx^{n}}\left( {\exp \left( {-x^{2}} \right) } \right) {\begin{array}{ll} &{} {or} \\ \end{array} } \\ H_n \left( x \right) =2^{n}x^{n}-2^{n-1}\left( {{\begin{array}{l} n \\ 2 \\ \end{array} }} \right) x^{n-1}+ \\ 2^{n-2}\cdot 1\cdot 3\cdot \left( {{\begin{array}{l} n \\ 4 \\ \end{array} }} \right) x^{n-4}-2^{n-3}\cdot 1\cdot 3\cdot 5\cdot \left( {{\begin{array}{l} n \\ 6 \\ \end{array} }} \right) x^{n-6}+\cdots \\ H_0 \left( x \right) =1 \\ \end{array} \end{aligned}$$
(20)

The remainder in Eq. (15) is given as:

$$\begin{aligned} R_n =\frac{n!\sqrt{\pi }}{2^{n}\left( {2n} \right) !}f^{\left( {2n} \right) }\left( \xi \right) {\begin{array}{ll} &{} {\left( {-\infty<\xi <\infty } \right) } \\ \end{array} } \end{aligned}$$
(21)

where \(\xi \) is arbitrarily chosen and \(f^{\left( n \right) }\left( x \right) \) is the \(n^{\mathrm{th}}\) derivative of f(x).

The precision of the Gauss-Hermite approximation is dominated by n. If the number of sample points (n) is insufficient, the approximate and exact curves do not match exactly. On the contrary, the larger n, the more accurate the approximation obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, S., Qian, Z. & Liu, Y. Outage probability of SSTS for distributed antenna systems over Rayleigh fading channels in multi-cell environment. Cluster Comput 22 (Suppl 3), 5397–5406 (2019). https://doi.org/10.1007/s10586-017-1254-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1254-0

Keywords

Navigation