Skip to main content
Log in

Relative entropy-based Kalman filter for seamless indoor/outdoor multi-source fusion positioning with INS/TC-OFDM/GNSS

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The current single data source positioning navigation systems cannot meet the high precision and high reliability required for indoor/outdoor positioning service. In this study, based on an inertial navigation system, time-and-code division-orthogonal frequency division multiplexing ranging technology and a global navigation satellite system, a relative entropy-based Kalman multi-source fusion positioning model is developed. First, multi-source numerical observation data are filtered, and the outliers are processed in data layers to improve data source reliability and to extract stable observation data. Next, the degree of the multi-source data coupling is quantified in an information layer to analyze the multi-source information coupling degree and to develop a coupling degree factor and a Kalman fusion positioning model for multi-source heterogeneous information. Tests show that this method significantly improves system positioning, navigation stability and positioning precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cho, J., Yu, J., Oh, S., et al.: Wrong siren! A location spoofing attack on indoor positioning systems: the Starbucks case study. IEEE Commun. Mag. 55(3), 132–137 (2017)

    Article  Google Scholar 

  2. Hwang, I., Jang, Y.J.: Process mining to discover shoppers’ pathways at a fashion retail store using a WiFi-base indoor positioning system. IEEE Trans. Autom. Sci. Eng. (2017). https://doi.org/10.1109/TASE.2017.2692961

  3. Fernandez-Llorca, D., Minguez, R.Q., Alonso, I.P., et al.: Assistive intelligent transportation systems: the need for user localization and anonymous disability identification. IEEE Intell. Transp. Syst. Mag. 9(2), 25–40 (2017)

    Article  Google Scholar 

  4. Yin, Y., Zeng, Y., Chen, X., et al.: The internet of things in healthcare: an overview. J. Ind. Inf. Integr. 1, 3–13 (2016)

    Google Scholar 

  5. Santoso, F., Redmond, S.J.: Indoor location-aware medical systems for smart homecare and telehealth monitoring: state-of-the-art. Physiol. Meas. 36(10), R53 (2015)

    Article  Google Scholar 

  6. Oosterlinck, D., Benoit, D.F., Baecke, P., et al.: Bluetooth tracking of humans in an indoor environment: an application to shopping mall visits. Appl. Geogr. 78, 55–65 (2017)

    Article  Google Scholar 

  7. Yang, Z., Zhang, P., Chen, L.: RFID-enabled indoor positioning method for a real-time manufacturing execution system using OS-ELM. Neurocomputing 174(PA), 121–133 (2016)

    Article  Google Scholar 

  8. Noh, Y., Yamaguchi, H., Lee, U.: Infrastructure-free collaborative indoor positioning scheme for time-critical team operations. IEEE Trans. Syst. Man Cybern. Syst. (2016). https://doi.org/10.1109/PerCom.2013.6526729

  9. Zhang, X., Chen, Y., Yu, L., et al.: Three-dimensional modeling and indoor positioning for urban emergency response. Int. J. Geoinf. 6(7), 214 (2017)

    Google Scholar 

  10. Luo, C., Fan, X., Ni, J., et al.: Positioning accuracy evaluation for the collaborative automation of mining fleet with the support of memory cutting technology. IEEE Access 4, 5764–5775 (2017)

    Article  Google Scholar 

  11. Friedman, J., Davitian, A., Torres, D., et al.: Angle-of-arrival-assisted relative interferometric localization using software defined radios. In: Proceedings of IEEE MILCOM, Boston, MA, USA, 2009, pp. 1–8

  12. Alletto, S., Cucchiara, R., Fiore, G.D., et al.: An indoor location-aware system for an IoT-based smart museum. IEEE Internet Things J. 3(2), 244–253 (2016)

    Article  Google Scholar 

  13. Sun, C., Wu, Z., Bai, B.: A novel compact wideband patch antenna for GNSS application. IEEE Trans. Antennas Propag. (2017). https://doi.org/10.1109/TAP.2017.2761987

  14. Yuan, X.M., Xin-Cheng, M.A., Sun, Y.Q.: The application of GNSS systems in bridge construction control. Geomat. Spat. Inf. Technol. 14(5), 220–222 (2017)

    Google Scholar 

  15. Zhang, C., Li, X., Gao, S., et al.: Performance analysis of global navigation satellite system signal acquisition aided by different grade inertial navigation system under highly dynamic conditions. Sensors (2017). https://doi.org/10.3390/s17050980

  16. Paul, A., Paul, K.S., Das, A.: Impact of multiconstellation satellite signal reception on performance of satellite-based navigation under adverse ionospheric conditions. Radio Sci. (2017). https://doi.org/10.1002/2016RS006076

  17. Li, B., Khing, Y., Dempster, A.G.: Using two GPS satellites to improve WiFi positioning accuracy in urban canyons. (2013). https://www.researchgate.net/publication/267936200

  18. Cheng, Y., Ye, H., Wang, Y., et al.: Unbiased minimum-variance state estimation for linear systems with unknown input. Automatica 45(2), 485–491 (2009)

    Article  MathSciNet  Google Scholar 

  19. Chang, L., Hu, B., Chang, G., et al.: Huber-based novel robust unscented Kalman filter. IET Sci. Meas. Technol. 6(6), 502–509 (2012)

    Article  Google Scholar 

  20. Bian, H., Jin, Z., Tian, W.: Study on GPS attitude determination system aided INS using adaptive Kalman filter. Meas. Sci. Technol. 16(16), 2072 (2005)

    Article  Google Scholar 

  21. Lin, S.G.: Assisted adaptive extended Kalman filter for low-cost single-frequency GPS/SBAS kinematic positioning. GPS Solut. 19(2), 215–223 (2015)

    Article  Google Scholar 

  22. Tu, R., Wang, R., Walter, T.R., et al.: Adaptive recognition and correction of baseline shifts from collocated GPS and accelerometer using two phases Kalman filter. Adv. Space Res. 54(9), 1924–1932 (2014)

    Article  Google Scholar 

  23. Jwo, D.J., Wang, S.H.: Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation. IEEE Sens. J. 7(5), 778–789 (2007)

    Article  Google Scholar 

  24. Shi, Y., Sang, C., Gao, S.: Adaptive filtering for INS/SAR integrated navigation system. In: Asian–Pacific Conference on Synthetic Aperture Radar, 2009. APSAR 2009, pp. 884–887. IEEE (2010)

  25. Zhu, W., Tang, J., Wan, S., et al.: Outlier-resistant adaptive filtering based on sparse Bayesian learning. Electron. Lett. 50(9), 663–665 (2014)

    Article  Google Scholar 

  26. Chen, B., Xing, L., Liang, J., et al.: Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion. IEEE Signal Process. Lett. 21(7), 880–884 (2014)

    Article  Google Scholar 

  27. Guo, H., Guo, J., Yu, M., et al.: A weighted combination filter with nonholonomic constrains for integrated navigation systems. Adv. Space Res. 55(5), 1470–1476 (2015)

    Article  Google Scholar 

  28. Ban, Y., Niu, X., Zhang, T., et al.: Modeling and quantitative analysis of GNSS/INS deep integration tracking loops in high dynamics. Micromachines 8(9), 272 (2017)

    Article  Google Scholar 

  29. Deng, Z., Yu, Y., Xie, Y., et al.: Situation and development tendency of indoor positioning. China Commun. 10(3), 42–55 (2013)

    Article  Google Scholar 

  30. Gultekin, S., Paisley, J.: Nonlinear Kalman filtering with divergence minimization. IEEE Trans. Signal Process. (2017). https://doi.org/10.1109/TSP.2017.2752729

  31. Zhou, C., Xiao, J.: Improved strong track filter and its application to vehicle state estimation. Acta Autom. Sin. 38(9), 1520 (2012)

    Article  Google Scholar 

  32. Sun, F., Tang, L.J.: INS/GPS integrated navigation filter algorithm based on cubature Kalman filter. Control Decis. 7, 1032–1036 (2012)

    MathSciNet  Google Scholar 

  33. Liu, H., Meng, X., Chen, Z., et al.: A closed-loop EKF and multi-failure diagnosis approach for cooperative GNSS positioning. GPS Solut. 20(4), 795–805 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Key Research and Development Program of China (Grant: 2016YFB0502001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enwen Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, E., Deng, Z., Xu, Q. et al. Relative entropy-based Kalman filter for seamless indoor/outdoor multi-source fusion positioning with INS/TC-OFDM/GNSS. Cluster Comput 22 (Suppl 4), 8351–8361 (2019). https://doi.org/10.1007/s10586-018-1803-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-1803-1

Keywords

Navigation