Skip to main content

Advertisement

Log in

Extreme learning machine for plant diseases classification: a sustainable approach for smart agriculture

  • Published:
Cluster Computing Aims and scope Submit manuscript

A Correction to this article was published on 26 November 2021

This article has been updated

Abstract

Nowadays, the economy of countries highly depends on the agriculture productivity which has a great effect on the development of human civilization. Sometimes, plant diseases cause a major reduction in agricultural products. This paper proposes a new approach for the automatic detection and classification of plant leaf diseases based on using the ELM deep learning algorithm on a real dataset of plant leaf images. The proposed approach uses the k-means clustering algorithm for image segmentation and applies the GLCM for feature extraction. The BDA optimization algorithm is employed for feature selection, and lastly the ELM algorithm is used for plant leaf diseases classification. The presented approach optimizes the input weights and hidden biases for ELM. The dataset used in this study includes 73 plant leaf images, such that we tested our approach on four diseases that usually affect plants, including: Alternaria alternata, Anthracnose, Bacterial blight, and Cercospora leaf spot. The experimental results show that the proposed approach has achieved encouraging results in terms of these classification measures: accuracy, error rate, recall, F score, and AUC which are 94%, 6%, 92%, 95%, and 96% respectively. Babu

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data set used in the work will be available upon request

Change history

References

  1. Weizheng, S., Yachun, W., Zhanliang, C., Hongda, W.: Grading method of leaf spot disease based on image processing. In: 2008 International Conference on Computer Science and Software Engineering, pp. 491–494. IEEE, Wuhan (2008)

    Chapter  Google Scholar 

  2. Babu, M., Rao, B.: Leaves recognition using back propagation neural network-advice for pest and disease control on crops. Expert Advisory System, IndiaKisan Net (2007)

  3. Camargo, A., Smith, J.: An image-processing based algorithm to automatically identify plant disease visual symptoms. Biosyst. Eng. 102(1), 9–21 (2009)

    Article  Google Scholar 

  4. Hillnhutter, C., Mahleni, A.: Early detection and localisation of sugar beet diseases. New Approach. Gesunde Pflanzen 60(4), 143–149 (2008)

    Google Scholar 

  5. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, London (2013)

    Google Scholar 

  6. Al Bashish, D., Braik, M., Bani-Ahmad, S.: Detection and classification of leaf diseases using k-means-based segmentation and neural networks—based classifications. Inform. Technol. J. 10(2), 267–275 (2011)

    Article  Google Scholar 

  7. Al-Zu’bi, S., Hawashin, B., Mughaid, A., Baker, T.: Efficient 3d medical image segmentation algorithm over a secured multimedia network. Multimed. Tools Appl. 80, 16887–16905 (2020)

    Article  Google Scholar 

  8. Al-Zu’bi, S., Hawashin, B., Mujahed, M., Jararweh, Y., Gupta, B.B.: An efficient employment of internet of multimedia things in smart and future agriculture. Multimed. Tools Appl. 78(20), 29581–29605 (2019)

    Article  Google Scholar 

  9. Liu, W.: Smart sensors, sensing mechanisms and platforms of sustainable smart agriculture realized through the big data analysis. Cluster Comput. 12, 1–15 (2021). https://doi.org/10.1007/s10586-021-03295-3

    Article  Google Scholar 

  10. Muthukannan, K., Latha, P., Selvi, R., Nisha, P.: Classification of diseased plant leaves using neural network algorithms. ARPN J. Eng. Appl. Sci. 10(4), 1913–1919 (2015)

    Google Scholar 

  11. Vijayalakshmi, S., Murugan, D.: An effective approach for diagnosis of plant disease using elm. (2018)

  12. Aqel, D., Hawashin, B.: Arabic relative clauses parsing based on inductive logic programming. Recent Pat. Comput. Sci. 11(2), 121–133 (2018)

    Article  Google Scholar 

  13. Aqel, D., Vadera, S.: A framework for employee appraisals based on sentiment analysis. In: Proceedings of the 1st International Conference on Intelligent Semantic Web-Services and Applications, pp 1–6 (2010)

  14. Aqel, D., Vadera, S.: A framework for employee appraisals based on inductive logic programming and data mining methods. In: International Conference on Application of Natural Language to Information Systems, pp. 404–407. Springer, Berlin (2013)

    Google Scholar 

  15. Shuja, J., Bilal, K., Alasmary, W., Sinky, H., Alanazi, E.: Applying machine learning techniques for caching in next-generation edge networks: a comprehensive survey. J. Netw. Comput. Appl. 181, 103005 (2021)

    Article  Google Scholar 

  16. Kruppa, J., Schwarz, A., Arminger, G., Ziegler, A.: Consumer credit risk: Individual probability estimates using machine learning. Expert Syst. Appl. 40(13), 5125–5131 (2013)

    Article  Google Scholar 

  17. Kulkarni, A., Patil, A.: Applying image processing technique to detect plant diseases. Int. J. Modern Eng. Res. 2(5), 3661–3664 (2012)

    Google Scholar 

  18. Revathi, P., Hemalatha, M.: Identification of cotton diseases based on cross information gain deep forward neural network classifier with pso feature selection. Int. J. Eng. Technol. 5(6), 4637–4642 (2014)

    Google Scholar 

  19. Rumpf, T., Mahlein, A., Steiner, U., Oerke, E., Dehne, H., Plümer, L.: Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput. Electron. Agric. 74(1), 91–99 (2010)

    Article  Google Scholar 

  20. Saragih, T., Mahmudy, W., Latief, A., Abadi, Y.: Application of extreme learning machine and modified simulated annealing for Jatropha curcas disease identification. Int. J. Adv. Soft Comput. Appl. 10(2), 108–119 (2018)

    Google Scholar 

  21. Singh, V., Misra, A.: Detection of plant leaf diseases using image segmentation and soft computing techniques. Inform. Process. Agric. 4(1), 41–49 (2017)

    Google Scholar 

  22. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  24. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  Google Scholar 

  25. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp. 281–297. IEEE, Oakland (1967)

    Google Scholar 

  26. Altman, N.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  27. Huang, G., Zhu, Q., Siew, C.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

  28. Akhtar, K., Saleem, M., Asghar, M., Haq, M.: New report of alternaria alternata causing leaf blight of tomato in Pakistan. Plant Pathol. 53(6), 816–816 (2004)

    Article  Google Scholar 

  29. Rangaswami, G., Mahadevan, A.: Diseases of Crop Plants in India. PHI Learning Pvt. Ltd., New Delhi (1998)

    Google Scholar 

  30. Martens, J., Seaman, W., Atkinson, T.: Diseases of field crops in Canada. Canadian Phytopathological. Society (1988)

  31. Horst, R.: Westcott’s Plant Disease Handbook. Springer, Berlin (2013)

    Book  Google Scholar 

  32. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  33. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)

    Article  MathSciNet  Google Scholar 

  34. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inform. Process. Manag. 45(4), 427–437 (2009)

    Article  Google Scholar 

  35. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  36. Broomhead, D.S., Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks. Tech. rep, Royal Signals and Radar Establishment Malvern (United Kingdom) (1988)

  37. Sanger, T.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2(6), 459–473 (1989)

    Article  Google Scholar 

  38. Popescu, M., Balas, V., Perescu-Popescu, L., Mastorakis, N.: Multilayer perceptron and neural networks. WSEAS Trans. Circuits Syst. 8(7), 579–588 (2009)

    Google Scholar 

  39. Devi, T.G., Neelamegam, P.: Image processing based rice plant leaves diseases in Thanjavur, Tamilnadu. Cluster Comput. 22(6), 13415–13428 (2019)

    Article  Google Scholar 

  40. Dubey, A.K., Ratan, R., Rocha, A., et al.: Computer vision based analysis and detection of defects in fruits causes due to nutrients deficiency. Cluster Comput. 23, 1–10 (2019)

    Google Scholar 

  41. Al-Hiary, H., Bani-Ahmad, S., Reyalat, M., Braik, M., Alrahamneh, Z.: Fast and accurate detection and classification of plant diseases. Int. J. Comput. Appl. 17(1), 31–38 (2011)

    Google Scholar 

  42. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, pp. 1942–1948. IEEE, Perth (1995)

    Chapter  Google Scholar 

  43. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  44. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Tech. rep., Technical report-tr06, Erciyes University, Engineering Faculty, Computer (2005)

  45. Shrivastava, V., Pradhan, M., Minz, S., Thakur, M.: Rice plant disease classification using transfer learning of deep convolution neural network. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences (2019)

  46. Valueva, M., Nagornov, N., Lyakhov, P., Valuev, G., Chervyakov, N.: Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math. Comput. Simul. 177, 232–243 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pham, T., VanTran, L., Dao, S.: Early disease classification of mango leaves using feed-forward neural network and hybrid metaheuristic feature selection. IEEE Access 8, 189960–189973 (2020)

    Article  Google Scholar 

  48. Hemalatha, S., Maheswaran, R.: Recognition of poultry disease in real time using extreme learning machine. In: International Conference of Disciplinary Research in Engineering and Technology (CIDRET2014), pp 44–50 (2014)

  49. Huang, G., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2011)

    Article  Google Scholar 

  50. Yang, X.: Nature-Inspired Metaheuristic Algorithms. Luniver press, Beckington (2010)

    Google Scholar 

  51. Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The bees algorithm. Technical Note. Manufacturing Engineering Centre, Cardiff University, Cardiff (2005)

    Google Scholar 

  52. Mehrabian, A., Lucas, C.: A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 1(4), 355–366 (2006)

    Article  Google Scholar 

  53. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: 2007 IEEE congress on evolutionary computation, Ieee, pp 4661–4667 (2007)

  54. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  55. Reynolds, R.: An introduction to cultural algorithms. In: Proceedings of the third annual conference on evolutionary programming, pp. 131–139. World Scientific, Singapore (1994)

    Google Scholar 

  56. Dixon, L.: The global optimization problem. an introduction. Toward Global Optim. 2, 1–15 (1978)

    Google Scholar 

  57. Molga, M., Smutnicki, C.: Test functions for optimization needs. Test Funct. Optim. Needs 101, 48 (2005)

    Google Scholar 

  58. Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Trans. Autom. Control 13(3), 270–276 (1968)

    Article  Google Scholar 

  59. Ackley, D.: A connectionist machine for genetic hillclimbing, vol. 28. Springer, Berlin (2012)

    Google Scholar 

  60. Back, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford (1996)

    Book  MATH  Google Scholar 

  61. Laguna, M., Martí, R.: Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J. Global Optim. 33(2), 235–255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. Mühlenbein, H., Schomisch, M., Born, J.: The parallel genetic algorithm as function optimizer. Parallel Comput. 17(6–7), 619–632 (1991)

    Article  MATH  Google Scholar 

  63. Törn, A., Žilinskas, A.: Global Optimization. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  64. Branin, F.: Widely convergent method for finding multiple solutions of simultaneous nonlinear equations. IBM J. Res. Dev. 16(5), 504–522 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  65. Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  66. Griewank, A.: Generalized descent for global optimization. J. Opt. Theory Appl. 34(1), 11–39 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by AL Zaytoonah University of Jordan

Author information

Authors and Affiliations

Authors

Contributions

All four Authors worked in an equivalent load at all stages to produce this research

Corresponding authors

Correspondence to Darah Aqel or Shadi Al-Zubi.

Ethics declarations

Informed consent

I have read and I understand the journal information and have agreed to all mentioned terms and conditions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliation of the author Ala Mughaid has been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqel, D., Al-Zubi, S., Mughaid, A. et al. Extreme learning machine for plant diseases classification: a sustainable approach for smart agriculture. Cluster Comput 25, 2007–2020 (2022). https://doi.org/10.1007/s10586-021-03397-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03397-y

Keywords

Navigation