Skip to main content
Log in

Optimal control of linear stochastic evolution equations in Hilbert spaces and uniform observability

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

In this paper we study the existence of the optimal (minimizing) control for a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolution equations with unbounded coefficients in the drift. The backward differential Riccati equation (BDRE) associated with these problems (see [2], for finite dimensional stochastic equations or [21], for infinite dimensional equations with bounded coefficients) is in general different from the conventional BDRE (see [10], [18]). Under stabilizability and uniform observability conditions and assuming that the control weight-costs are uniformly positive, we establish that BDRE has a unique, uniformly positive, bounded on ℝ + and stabilizing solution. Using this result we find the optimal control and the optimal cost. It is known [18] that uniform observability does not imply detectability and consequently our results are different from those obtained under detectability conditions (see [10]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Barbu and G. Da Prato: Hamilton Jacobi Equations in Hilbert Spaces. Research Notes in Mathematics, 86. Boston-London-Melbourne: Pitman Advanced Publishing Program, 1983.

    MATH  Google Scholar 

  2. S. Chen and Xun YU Zhou: Stochastic linear quadratic regulators with indefinite control weight costs. II. SIAM J. Control Optimization 39 (2000), 1065–1081.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Curtain and J. Pritchard: Infinite Dimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences. 8. Berlin-Heidelberg-New York: Springer-Verlag. VII, 1978.

    MATH  Google Scholar 

  4. R. Curtain and P. Falb: Ito’s Lemma in infinite dimensions. J. Math. Anal. Appl. 31 (1970), 434–448.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Dragan and T. Morozan: Stochastic observability and applications. IMA J. Math. Control Inf. 21 (2004), 323–344.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Grecksch and C. Tudor: Stochastic Evolution Equations. A Hilbert Space Approach. Mathematical Research. 85. Berlin: Akademie Verlag, 1995.

    MATH  Google Scholar 

  7. R. Douglas: Banach Algebra Techniques in Operator Theory. Pure and Applied Mathematics, 49. New York-London: Academic Press. XVI, 1972.

    MATH  Google Scholar 

  8. A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44, Springer-Verlag, Berlin, New York, 1983.

    MATH  Google Scholar 

  9. G. Da Prato: Quelques résultats d’existence, unicité et régularité pour une problème de la théorie du contrôle. J. Math. Pures et Appl. 52 (1973), 353–375.

    Google Scholar 

  10. G. Da Prato and A. Ichikawa: Quadratic control for linear time-varying systems. SIAM. J. Control and Optimization 28 (1990), 359–381.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Da Prato and J. Zabczyc: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. 44. Cambridge, Cambridge University Press. xviii, 1992.

    MATH  Google Scholar 

  12. G. Da Prato and A. Ichikawa: Quadratic control for linear periodic systems. Appl. Math. Optimization 18 (1988), 39–66.

    Article  MATH  Google Scholar 

  13. G. Da Prato and A. Ichikawa: Lyapunov equations for time-varying linear systems. Syst. Control Lett. 9 (1987), 165–172.

    Article  MATH  Google Scholar 

  14. A. J. Pritchard and J. Zabczyc: Stability and Stabilizability of Infinite Dimensional Systems. SIAM Rev. 23 (1981), 25–52.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Morozan: Stochastic uniform observability and Riccati equations of stochastic control. Rev. Roum. Math. Pures Appl. 38 (1993), 771–781.

    MATH  MathSciNet  Google Scholar 

  16. T. Morozan: On the Riccati Equation of Stochastic Control. Optimization, optimal control and partial differential equations. Proc. 1st Fr.-Rom. Conf., Iasi/Rom., 1992.

  17. T. Morozan: Linear quadratic, control and tracking problems for time-varying stochastic differential systems perturbed by a Markov chain. Rev. Roum. Math. Pures Appl. 46 (2001), 783–804.

    MATH  MathSciNet  Google Scholar 

  18. V. M. Ungureanu: Riccati equation of stochastic control and stochastic uniform observability in infinite dimensions. Barbu, Viorel (ed.) et al., Analysis and optimization of differential systems. IFIP TC7/WG 7.2 international working conference, Constanta, Romania, September 10–14, 2002. Boston, MA: Kluwer Academic Publishers (2003), 421–432.

    Google Scholar 

  19. V. M. Ungureanu: Uniform exponential stability for linear discrete time systems with stochastic perturbations in Hilbert spaces. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 7 (2004), 757–772.

    MATH  MathSciNet  Google Scholar 

  20. V. M. Ungureanu: Representations of mild solutions of time-varying linear stochastic equations and the exponential stability of periodic systems. Electron. J. Qual. Theory Differ. Equ. 2004, Paper No. 4, 22 p. (2004).

  21. V. M. Ungureanu: Cost of tracking for differential stochastic equations in Hilbert spaces. Stud. Univ. Babeş-Bolyai, Math. 50 (2005), 73–81.

    MATH  MathSciNet  Google Scholar 

  22. V. M. Ungureanu: Stochastic uniform observability of linear differential equations with multiplicative noise. J. Math. Anal. Appl. 343 (2008), 446–463.

    Article  MATH  MathSciNet  Google Scholar 

  23. V. M. Ungureanu: Stochastic uniform observability of general linear differential equations. Dynamical Systems 23 (2008), 333–350.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Tudor: Optimal control for an infinite-dimensional periodic problem under white noise perturbations. SIAM J. Control Optimization 28 (1990), 253–264.

    Article  MATH  MathSciNet  Google Scholar 

  25. K. Yosida: Functional analysis. 6th ed. Grundlehren der mathematischen Wissenschaften, 123. Berlin-Heidelberg-New York: Springer-Verlag. XII, 1980.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorica Mariela Ungureanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungureanu, V.M. Optimal control of linear stochastic evolution equations in Hilbert spaces and uniform observability. Czech Math J 59, 317–342 (2009). https://doi.org/10.1007/s10587-009-0023-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-009-0023-5

Keywords

MSC 2000

Navigation