Skip to main content
Log in

An algorithm for nonlinear optimization problems with binary variables

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

One of the challenging optimization problems is determining the minimizer of a nonlinear programming problem that has binary variables. A vexing difficulty is the rate the work to solve such problems increases as the number of discrete variables increases. Any such problem with bounded discrete variables, especially binary variables, may be transformed to that of finding a global optimum of a problem in continuous variables. However, the transformed problems usually have astronomically large numbers of local minimizers, making them harder to solve than typical global optimization problems. Despite this apparent disadvantage, we show that the approach is not futile if we use smoothing techniques. The method we advocate first convexifies the problem and then solves a sequence of subproblems, whose solutions form a trajectory that leads to the solution. To illustrate how well the algorithm performs we show the computational results of applying it to problems taken from the literature and new test problems with known optimal solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  2. Boman, E.G.: Infeasibility and negative curvature in optimization. Ph.D. thesis, Scientific Computing and Computational Mathematics Program, Stanford University, Stanford (1999)

  3. Borchardt, M.: An exact penalty approach for solving a class of minimization problems with boolean variables. Optimization 19(6), 829–838 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burer, S., Vandenbussche, D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. (2007). doi: 10.1007/s10589-007-9137-6

    Google Scholar 

  5. Bussieck, M.R., Drud, A.S.: SBB: a new solver for mixed integer nonlinear programming, OR 2001 presentation. http://www.gams.com/presentations/or01/sbb.pdf (2001)

  6. Cela, E.: The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  7. Del Gatto, A.: A subspace method based on a differential equation approach to solve unconstrained optimization problems. Ph.D. thesis, Management Science and Engineering Department, Stanford University, Stanford (2000)

  8. Dembo, R.S., Steihaug, T.: Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Program. 26, 190–212 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Du, D.-Z., Pardalos, P.M.: Global minimax approaches for solving discrete problems. In: Recent Advances in Optimization: Proceedings of the 8th French–German Conference on Optimization, Trier, 21–26 July 1996, pp. 34–48. Springer, Berlin (1997)

    Google Scholar 

  10. Duran, M.A., Grossmann, I.E.: An outer approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York/Toronto (1968)

    MATH  Google Scholar 

  12. Forsgren, A., Gill, P.E., Murray, W.: Computing modified Newton directions using a partial Cholesky factorization. SIAM J. Sci. Comput. 16, 139–150 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Forsgren, A., Murray, W.: Newton methods for large-scale linear equality-constrained minimization. SIAM J. Matrix Anal. Appl. 14(2), 560–587 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ge, R., Huang, C.: A continuous approach to nonlinear integer programming. Appl. Math. Comput. 34, 39–60 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gill, P.E., Murray, W.: Newton-type methods for unconstrained and linearly constrained optimization. Math. Program. 7, 311–350 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gill, P.E., Murray, W., Wright, M.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  17. Golub, G.H., Van Loan, C.F.: Matrix Computation. John Hopkins University Press, Baltimore/London (1996)

    Google Scholar 

  18. Grossmann, I.E., Viswanathan, J., Vecchietti, A., Raman, R., Kalvelagen, E.: GAMS/DICOPT: a discrete continuous optimization package (2003)

  19. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)

    MATH  Google Scholar 

  20. Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. Ph.D. thesis, Department of Mathematics & Computer Science, University of Dundee, Dundee (1993)

  21. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mawengkang, H., Murtagh, B.A.: Solving nonlinear integer programs with large-scale optimization software. Ann. Oper. Res. 5, 425–437 (1985)

    MathSciNet  Google Scholar 

  23. Mitchell, J., Pardalos, P.M., Resende, M.G.C.: Interior point methods for combinatorial optimization. In: Handbook of Combinatorial Optimization, vol. 1, pp. 189–298 (1998)

  24. Moré, J.J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim. 7, 814–836 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Murray, W., Ng, K.-M.: Algorithms for global optimization and discrete problems based on methods for local optimization. In: Pardalos, P., Romeijn, E. (eds.) Heuristic Approaches. Handbook of Global Optimization, vol. 2, pp. 87–114. Kluwer Academic, Boston (2002), Chapter 3

    Google Scholar 

  26. Ng, K.-M.: A continuation approach for solving nonlinear optimization problems with discrete variables. Ph.D. thesis, Management Science and Engineering Department, Stanford University, Stanford (2002)

  27. Pan, S., Tan, T., Jiang, Y.: A global continuation algorithm for solving binary quadratic programming problems. Comput. Optim. Appl. 41(3), 349–362 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Pardalos, P.M.: Construction of test problems in quadratic bivalent programming. ACM Trans. Math. Softw. 17(1), 74–87 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Pardalos, P.M.: Continuous approaches to discrete optimization problems. In: Di, G., Giannesi, F. (eds.) Nonlinear Optimization and Applications, pp. 313–328. Plenum, New York (1996)

    Google Scholar 

  30. Pardalos, P.M., Rosen, J.B.: Constrained Global Optimization: Algorithms and Applications. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  31. Pardalos, P.M., Wolkowicz, H.: Topics in Semidefinite and Interior-Point Methods. Am. Math. Soc., Providence (1998)

    MATH  Google Scholar 

  32. Sahinidis, N.V.: BARON global optimization software user manual. http://archimedes.scs.uiuc.edu/baron/manuse.pdf (2000)

  33. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: A theoretical and computational study. Math. Program. 99(3), 563–591 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang, L.-S., Gao, F., Zhu, W.-X.: Nonlinear integer programming and global optimization. J. Comput. Math. 17(2), 179–190 (1999)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Murray.

Additional information

The research of W. Murray was supported by Office of Naval Research Grant N00014-08-1-0191 and Army Grant W911NF-07-2-0027-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, W., Ng, KM. An algorithm for nonlinear optimization problems with binary variables. Comput Optim Appl 47, 257–288 (2010). https://doi.org/10.1007/s10589-008-9218-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-008-9218-1

Keywords

Navigation