Skip to main content
Log in

Benchmarking the simulation of Cr isotope fractionation

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

A benchmark problem set consisting of four problem levels was developed for the simulation of Cr isotope fractionation in 1D and 2D domains. The benchmark is based on a recent field study where Cr(VI) reduction and accompanying Cr isotope fractionation occurs abiotically by an aqueous reaction with dissolved Fe 2+ (Wanner et al., 2012., Appl. Geochem., 27, 644–662). The problem set includes simulation of the major processes affecting the Cr isotopic composition such as the dissolution of various Cr(VI) bearing minerals, fractionation during abiotic aqueous Cr(VI) reduction, and non-fractionating precipitation of Cr(III) as sparingly soluble Cr-hydroxide.

Accuracy of the presented solutions was ensured by running the problems with four well-established reactive transport modeling codes: TOUGHREACT, MIN3P, CRUNCHFLOW, and FLOTRAN. Results were also compared with an analytical Rayleigh-type fractionation model. An additional constraint on the correctness of the results was obtained by comparing output from the problem levels simulating Cr isotope fractionation with the corresponding ones only simulating bulk concentrations. For all problem levels, model to model comparisons showed excellent agreement, suggesting that for the tested geochemical processes any code is capable of accurately simulating the fate of individual Cr isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kotas, J., Stasicka, Z.: Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 107, 263–283 (2000)

    Article  Google Scholar 

  2. Oze, C., Bird, D.K., Fendorf, S.: Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. Natl. Acad. Sci. U. S. A. 104, 6544–6549 (2007)

    Article  Google Scholar 

  3. Szalinska, E., Dominik, J., Vignati, D.A.L., Bobrowski, A., Bas, B.: Seasonal transport pattern of chromium(III and VI) in a stream receiving wastewater from tanneries. Appl. Geochem. 25, 116–122 (2010)

    Article  Google Scholar 

  4. Rai, D., Sass, B.M., Moore, D.A.: Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 26, 345–349 (1987)

    Article  Google Scholar 

  5. Powell, R.M., Puls, R.W., Hightower, S.K., Sabatini, D.A.: Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ. Sci. Technol. 29, 1913–1922 (1995)

    Article  Google Scholar 

  6. Palmer, C.D., Puls, R.: W. Iron Metal for Subsurface Remediation; EPA/540/S-94/505; U.S. EPA Ground Water Issue (1994)

  7. Naftz, D.L., Morrison, S.J., Davies, J.A., Fuller, C.C.: Handbook of Groundwater remediation using permeable reactive barriers. Elsevier Science, San Diego, USA (2002)

    Google Scholar 

  8. Flury, B., Frommer, J., Eggenberger, U., Mäder, U., Nachtegaal, M., Kretzschmar, R.: Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environ. Sci. Technol. 43, 6786–6792 (2009)

    Article  Google Scholar 

  9. Wanner, C., Zink, S., Eggenberger, U., Mäder, U.: Assessing the Cr(VI) reduction efficiency of a permeable reactive barrier using Cr isotope measurements and 2D reactive transport modeling. J. Cotam. Hydrol. 131, 54–63 (2012)

    Article  Google Scholar 

  10. Faybishenko, B., Hazen, T.C., Long, P.E., Brodie, E.L., Conrad, M.E., Hubbard, S.S., Christensen, J.N., Joyner, D., Borglin, S.E., Chakraborty, R., Williams, K.H., Peterson, J.E., Chen, J., Brown, S.T., Tokunaga, T.K., Wan, J., Firestone, M., Newcomer, D.R., Resch, C.T., Cantrell, K.J., Willett, A., Koenigsberg, S.: In Situ long-term reductive bioimmobilization of Cr(VI) in Groundwater using hydrogen release compound. Environ. Sci. Technol. 42, 8478–8485 (2008)

    Article  Google Scholar 

  11. Wanner, C., Zink, S., Eggenberger, U., Mäder, U.: Unraveling the partial failure of a permeable reactive barrier using a multi-tracer experiment and Cr isotope measurements. Appl. Geochem. 37, 125–133 (2013)

    Article  Google Scholar 

  12. Zink, S., Schoenberg, R., Staubwasser, M.: Isotopic fractionation and reaction kinetics between Cr(III) and Cr(VI) in aqueous media. Geochim. Cosmochim. Acta 74, 5729–5745 (2010)

    Article  Google Scholar 

  13. Basu, A., Johnson, T.M.: Determination of Hexavalent chromium reduction using cr stable isotopes: isotopic fractionation factors for permeable reactive barrier materials. Environ. Sci. Technol. 46, 5353–5360 (2012)

    Article  Google Scholar 

  14. Kitchen, J.W., Johnson, T.M., Bullen, T.D., Zhu, J., Raddatz, A.L.: Chromium isotope fractionation factors for reduction of Cr(VI) by aqueous Fe(II) and organic molecules. Geochim. Cosmochim, Acta (2012)

    Google Scholar 

  15. Jamieson-Hanes, J.H., Gibson, B.D., Lindsay, M.B.J., Kim, Y., Ptacek, C.J., Blowes, D.W.: Chromium Isotope fractionation during reduction of cr(vi) under saturated flow conditions. Environ. Sci. Technol. 46, 6783–6789 (2012)

    Article  Google Scholar 

  16. Izbicki, J.A., Ball, J.W., Bullen, T.D., Sutley, S.J.: Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Appl. Geochem. 23, 1325–1352 (2008)

    Article  Google Scholar 

  17. Berna, E.C., Johnson, T.M., Makdisi, R.S., Basu, A.: Cr stable isotopes as indicators of Cr(VI) reduction in groundwater: a detailed time-series study of a point-source plume. Environ. Sci. Technol. 44, 1043–1048 (2010)

    Article  Google Scholar 

  18. Wanner, C., Eggenberger, U., Kurz, D., Zink, S., Mäder, U.: A chromate-contaminated site in southern Switzerland, part 1: site characterization and the use of Cr isotopes to delineate fate and transport. Appl. Geochem. 27, 644–654 (2012)

    Article  Google Scholar 

  19. Izbicki, J.A., Bullen, T.D., Martin, P., Schroth, B.: Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA. Appl. Geochem. 27, 841–853 (2012)

    Article  Google Scholar 

  20. Ellis, A.S., Johnson, T.M., Bullen, T.D.: Chromium isotopes and the fate of hexavalent chromium in the environment. Science 295, 2060–2062 (2002)

    Article  Google Scholar 

  21. Wanner, C., Sonnenthal, E.L.: Assessing the control on the effective kinetic Cr isotope fractionation factor: a reactive transport modeling approach. Chem. Geol. 337, 88–98 (2013)

    Article  Google Scholar 

  22. Dossing, L.N., Dideriksen, K., Stipp, S.L.S., Frei, R.: Reduction of hexavalent chromium by ferrous iron: a process of chromium isotope fractionation and its relevance to natural environments. Chem. Geol. 285, 157–166 (2011)

    Article  Google Scholar 

  23. Sikora, E.R., Johnson, T.M., Bullen, T.D.: Microbial mass-dependent fractionation of chromium isotopes. Geochim. Cosmochim. Acta 72, 3631–3641 (2008)

    Article  Google Scholar 

  24. DePaolo, D.J.: Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. Geochim. Cosmochim. Acta 75, 1039–1056 (2011)

    Article  Google Scholar 

  25. Druhan, J.L., Steefel, C.I., Williams, K.H., DePaolo, D.J.: Calcium isotope fractionation in groundwater: molecular scale processes influencing field scale behavior. Geochim. Cosmochim. Acta 119, 93–116 (2013)

    Article  Google Scholar 

  26. Green, C.T., Bohlke, J.K., Bekins, B.A., Phillips, S.P.: Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer. Water Resour. Res. 46, W08525 (2010). doi:10.1029/2009WR008903

    Article  Google Scholar 

  27. Abe, Y., Hunkeler, D.: Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology?. Environ. Sci. Technol. 40, 1588–1596 (2006)

    Article  Google Scholar 

  28. Van Breukelen, B.M.V., Prommer, H.: Beyond the Rayleigh Equation: reactive transport modeling of isotope fractionation effects to improve quantification of biodegradation. Environ. Sci. Technol. 42, 2457–2463 (2008)

    Article  Google Scholar 

  29. Jamieson-Hanes, J.H., Amos, R.T., Blowes, D.W.: Reactive Transport modeling of chromium isotope fractionation during Cr(VI) reduction. Environ. Sci. Technol. 46, 13311–13316 (2012)

    Article  Google Scholar 

  30. Wanner, C., Eggenberger, U., Mäder, U.: A chromate-contaminated site in southern Switzerland, part 2: reactive transport modeling to optimize remediation options. Appl. Geochem. 27, 655–662 (2012)

    Article  Google Scholar 

  31. Druhan, J.L., Steefel, C.I., Molins, S., Williams, K.H., Conrad, M.E., DePaolo, D.J.: Timing the onset of sulfate reduction over multiple subsurface acetate amendments by measurement and modeling of sulfur isotope fractionation. Environ. Sci. Technol. 46, 8895–8902 (2012)

    Article  Google Scholar 

  32. Druhan, J.L., Steefel, C.I., Conrad, M.E., DePaolo, D.J.: A Large column analog experiment of stable isotope variations during reactive transport: I. A Comprehensive model of sulfur cycling and δ34S fractionation. Geochim. Cosmochim. Acta 124, 366–393 (2014)

    Article  Google Scholar 

  33. Zhang, Y.-C., Prommer, H., Broers, H.P., Slomp, C.P., Greskoviak, J., Van der Grift, B., Van Cappellen, P.: Model-Based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer. Environ. Sci. Technol. 47, 10415–10422 (2013)

    Google Scholar 

  34. Gibson, B.D., Amos, R.T., Blowes, D.W.: (??)S/(??)S fractionation during sulfate reduction in groundwater treatment systems: reactive transport modeling. Environ. Sci. Technol. 45, 2863–2870 (2011)

    Article  Google Scholar 

  35. Van Breukelen, B.M., Griffioen, J., Roling, W.F.M., van Verseveld, H.W.: Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume. J. Cotam. Hydrol. 70, 249–269 (2004)

    Article  Google Scholar 

  36. Van Breukelen, B.M., Hunkeler, D., Volkering, F.: Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation. Environ. Sci. Technol. 39, 4189–4197 (2005)

    Article  Google Scholar 

  37. Atteia, O., Franceschi, M., Dupuy, A.: Validation of reactive model assumptions with isotope data: application to the Dover case. Environ. Sci. Technol. 42, 3289–3295 (2008)

    Article  Google Scholar 

  38. Prommer, H., Aziz, L.H., Bolano, N., Taubald, H., Schueth, C.: Modelling of geochemical and isotopic changes in a column experiment for degradation of TCE by zero-valent iron. J. Cotam. Hydrol. 97, 13–26 (2008)

    Article  Google Scholar 

  39. Pooley, K.E., Blessing, M., Schmidt, T.C., Haderlein, S.B., Macquarrie, K.T.B., Prommer, H.: Aerobic biodegradation of chlorinated ethenes in a fractured bedrock aquifer: quantitative assessment by compound-specific isotope analysis (CSIA) and reactive transport modeling. Environ. Sci. Technol. 43, 7458–7464 (2009)

    Article  Google Scholar 

  40. Rolle, M., Chiogna, G., Bauer, R., Griebler, C., Grathwohl, P.: Isotopic Fractionation by transverse dispersion: flow-through microcosms and reactive transport modeling study. Environ. Sci. Technol. 44, 6167–6173 (2010)

    Article  Google Scholar 

  41. Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meussen, H., Molins, S., Moulton, D., Parkhurst, D.L., Shao, H., Simunek, J., Spycher, N., Yabusaki, S., Yeh, G. T.: Reactive transport codes for subsurface environmental simulation. Computational Geoscience (2014)

  42. Schoenberg, R., Zink, S., Staubwasser, M., von Blanckenburg, F.: The stable Cr isotope inventory of solid earth reservoirs determined by double spike MC-ICP-MS. Chem. Geol. 249, 294–306 (2008)

    Article  Google Scholar 

  43. Ellis, A.S., Johnson, T.M., Bullen, T.D.: Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Environ. Sci. Technol. 38, 3604–3607 (2004)

    Article  Google Scholar 

  44. Johnson, J.W., Oelkers, E.H., Helgeson, H.C.: SUPCRT92: a software package for calculating the standard molal thermodynamic poroperties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 C. Comput. Geosci. 18, 899–948 (1992)

    Article  Google Scholar 

  45. Wolery, T.J.: EQ3/6: Software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7.0). Livermore, California (1992)

    Book  Google Scholar 

  46. Ball, J.W., Nordstrom, D.K.: Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. J. Chem. Eng. Data 43, 895–918 (1998)

    Article  Google Scholar 

  47. Lasaga, A.C.: Chemical kinetics of water-rock interactions. J. Geoph. Res. 89, 4009–4025 (1984)

    Article  Google Scholar 

  48. Buerge, I.J., Hug, S.J.: Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ. Sci. Technol. 31, 1426–1432 (1997)

    Article  Google Scholar 

  49. Shields, W.R., Murphy, T.J., E.J., C., Garner, E.L.: Absolute isotopic abundance ratios and atomic weight of a reference sample of chromium Journal of Research of the National Bureau of Standards Section Physics and Chemistry A 70 (1966)

  50. Coplen, T.B.: Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011)

    Google Scholar 

  51. Xu, T., Spycher, N., Sonnenthal, E.L., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT Version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Comput. Geosci. 37, 763–774 (2011)

    Article  Google Scholar 

  52. Lichtner, P.C.: FLOTRAN users manual: two-phase non-sothermal coupled thermal-hydrologic-chemical (THC) reactive flow and transport code version 2. Los Alamos National Laboratory, New Mexico, USA (2007)

    Google Scholar 

  53. Steefel, C., Maher, K.: Fluid-rock interaction: a reactive transport approach. In Thermodynamics and kinetics of water-rock interaction. In: Oelkers, E. H., Schott, J. (eds.) Mineralogical Society of America: 2009; Vol. Reviews in Mineralogy 70, pp 485– 532

  54. Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38, 1174 (2002). doi:10.1029/2001WR000862

    Article  Google Scholar 

  55. Baron, D., Palmer, C.D.: Solubility of KFe3(CrO4)2(OH)6 at 4 to 35 C. Geochim. Cosmochim. Acta 60, 3815–3824 (1996)

    Article  Google Scholar 

  56. Palandri, J.L., Kharaka, Y.K.A.: Compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling; U.S. Geological Survey Open-File Report 2004-1068; US Geological Survey (2004)

  57. Appelo, C.A.J., Postma, D.: Geochemistry, groundwater and pollution. 2nd edition ed. Balkema, Amsterdam, The Netherlands (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Wanner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(GZ 103 KB)

(GZ 18.4 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanner, C., Druhan, J.L., Amos, R.T. et al. Benchmarking the simulation of Cr isotope fractionation. Comput Geosci 19, 497–521 (2015). https://doi.org/10.1007/s10596-014-9436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-014-9436-9

Keywords

Navigation