Skip to main content
Log in

A space-time adaptive method for reservoir flows: formulation and one-dimensional application

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper presents a space-time adaptive framework for solving porous media flow problems, with specific application to reservoir simulation. A fully unstructured mesh discretization of space and time is used instead of a conventional time-marching approach. A space-time discontinuous Galerkin finite element method is employed to achieve a high-order discretization on the anisotropic, unstructured meshes. Anisotropic mesh adaptation is performed to reduce the error of a specified output of interest, by using a posteriori error estimates from the dual-weighted residual method to drive a metric-based mesh optimization algorithm. The space-time adaptive method is tested on a one-dimensional two-phase flow problem, and is found to be more efficient in terms of computational cost (degrees-of-freedom and total runtime) required to achieve a specified output error level, when compared to a conventional first-order time-marching finite volume method and the space-time discontinuous Galerkin method on structured meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amaziane, B., Bourgeois, M., El Fatini, M.: Adaptive mesh refinement for a finite volume method for flow and transport of radionuclides in heterogeneous porous media. Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles 69(4), 687–699 (2014)

    Article  Google Scholar 

  2. Amenta, N., Attali, D.: Abstract complexity of delaunay triangulation for points on lower-dimensional polyhedra (2007)

  3. Argyris, J., Scharpf, D.: Finite elements in time and space. Nucl. Eng. Des. 10(4), 456–464 (1969)

    Article  Google Scholar 

  4. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  Google Scholar 

  5. Aziz, K., Settari, A.: Petroleum reservoir simulation. Elsevier (1979)

  6. Babuska, I., Szabo, B.A., Katz, I.N.: The p-version of the finite element method. SIAM J. Numer. Anal. 18(3), 515–545 (1981)

    Article  Google Scholar 

  7. Baker, T.J.: Mesh adaptation strategies for problems in fluid dynamics. Finite Elem. Anal. Des. 25, 243–273 (1997)

    Article  Google Scholar 

  8. Bassi, F., Rebay, S.: GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: theory, Computation and Applications, pp. 197–208. Springer, Berlin (2000)

  9. Bassi, F., Rebay, S.: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 40, 197–207 (2002)

    Article  Google Scholar 

  10. Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4, 237–264 (1996)

    Google Scholar 

  11. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. In: Iserles, A. (ed.) Acta Numerica. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  12. Cao, W., Huang, W., Russell, R.D.: Comparison of two-dimensional r-adaptive finite element methods using various error indicators. Math. Comput. Simul. 56(2), 127–143 (2001). Method of lines

    Article  Google Scholar 

  13. Chen, Z., Steeb, H., Diebels, S.: A space-time discontinuous Galerkin method applied to single-phase flow in porous media. Comput. Geosci. 12(4), 525–539 (2008)

    Article  Google Scholar 

  14. Chueh, C., Secanell, M., Bangerth, W., Djilali, N.: Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media. Comput. Fluids 39(9), 1585–1596 (2010)

    Article  Google Scholar 

  15. Davis, T.A.: Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)

    Article  Google Scholar 

  16. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193(23-26), 2565–2580 (2004)

    Article  Google Scholar 

  17. Dogru, A.H., Fung, L.S., Middya, U., Al-Shaalan, T.M., Pita, J.A.: A next-generation parallel reservoir simulator for giant reservoirs Society of Petroleum Engineers (2009)

  18. Dwyer, R.A.: Higher-dimensional voronoi diagrams in linear expected time. Discrete Comput. Geom. 6(3), 343–367 (1991)

    Article  Google Scholar 

  19. Epshteyn, Y., Rivière, B.: On the solution of incompressible two-phase flow by a p-version discontinuous Galerkin method. Commun. Numer. Methods Eng. 22(7), 741–751 (2006)

    Article  Google Scholar 

  20. Epshteyn, Y., Rivière, B.: Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow. J. Comput. Appl. Math. 225(2), 487–509 (2009)

    Article  Google Scholar 

  21. Fried, I.: Finite-element analysis of time-dependent phenomena. AIAA J. 7(6), 1170–1173 (1969)

    Article  Google Scholar 

  22. Hartmann, R.: Numerical analysis of higher order discontinuous galerkin finite element methods. In: Deconinck, H. (ed.) VKI, LS 2008-08: CFD/ADIGMA Course on Very High Order Discretization Methods. Von Karman Institute for Fluid Dynamics (2008)

  23. Hughes, T.J.R., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formulations and error estimates. Comput. Methods Appl. Mech. Eng. 66, 339–363 (1988)

    Article  Google Scholar 

  24. Hulbert, G.M., Hughes, T.J.R.: Space-time finite element methods for second-order hyperbolic equations. Comput. Methods Appl. Mech. Eng. 84(3), 327–348 (1990)

    Article  Google Scholar 

  25. Jayasinghe, S., Darmofal, D.L., Galbraith, M.C., Burgess, N.K., Allmaras, S.R.: Adjoint analysis of Buckley-Leverett and two-phase flow equations. Comput. Geosci. (submitted) (2016)

  26. Jayasinghe, Y.S.: A space-time adaptive method for flows in oil reservoirs. Master’s Thesis, Mass. Inst. of Tech., Department of Aeronautics and Astronautics (2015)

  27. Johnson, S.G.: The NLopt nonlinear-optimization package, available at: http://ab-initio.mit.edu/nlopt

  28. Klieber, W., Rivière, B.: Adaptive simulations of two-phase flow by discontinuous galerkin methods. Comput. Methods Appl. Mech. Eng. 196(1-3), 404–419 (2006)

    Article  Google Scholar 

  29. Leech, J.: Some sphere packings in higher space. Can. J. Math., 657–682 (1964)

  30. Loseille, A., Alauzet, F.: Optimal 3D highly anisotropic mesh adaptation based on the continuous mesh framework. In: Proceedings of the 18th International Meshing Roundtable, pp 575–594. Springer, Berlin (2009)

    Chapter  Google Scholar 

  31. Loseille, A., Löhner, R.: On 3d anisotropic local remeshing for surface, volume and boundary layers. In: Proceedings of the 18th International Meshing Roundtable, pp 611–630. Springer, Berlin (2009)

    Chapter  Google Scholar 

  32. Loseille, A., Löhner, R.: Anisotropic adaptive simulations in aerodynamics. AIAA, 2010–169 (2010)

  33. Michel, A.: A finite volume scheme for two-phase immiscible flow in porous media. SIAM J. Numer. Anal. 41, 1301–1317 (2003)

    Article  Google Scholar 

  34. Obi, E., Eberle, N., Fil, A., Cao, H.: Giga cell compositional simulation international petroleum technology conference (2014)

  35. Oden, J.T.: A general theory of finite elements. II. Applications. Int. J. Numer. Methods Eng. 1(3), 247–259 (1969)

    Article  Google Scholar 

  36. Oden, J.T., Babuska, I., Baumann, C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998)

    Article  Google Scholar 

  37. Peaceman, D.: Fundamentals of numerical reservoir simulation. Elsevier (1977)

  38. Rivière, B.: Numerical study of a discontinuous Galerkin method for incompressible two-phase flow ECCOMAS Proceedings. Finland (2004)

  39. Rivière, B., Wheeler, M.F.: Discontinuous Galerkin methods for flow and transport problems in porous media. Commun. Numer. Methods Eng. 18(1), 63–68 (2002)

    Article  Google Scholar 

  40. Rivière, B., Wheeler, M.F., Banaś, K.: Part II. Discontinuous Galerkin method applied to a single phase flow in porous media. Comput. Geosci. 4, 337–349 (2000)

    Article  Google Scholar 

  41. Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3(3-4), 337–360 (1999)

    Article  Google Scholar 

  42. Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)

    Article  Google Scholar 

  43. Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.O., van Leer, B., Visbal, M.: High-order cfd methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013)

    Article  Google Scholar 

  44. Wheeler, M.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  Google Scholar 

  45. Yano, M.: An optimization framework for adaptive higher-order discretizations of partial differential equations on anisotropic simplex meshes. PhD thesis, Massachusetts Institute of Technology Department of Aeronautics and Astronautics (2012)

  46. Yano, M., Darmofal, D.L.: An optimization-based framework for anisotropic simplex mesh adaptation. J. Comput. Phys. 231(22), 7626–7649 (2012)

    Article  Google Scholar 

  47. Zong, C.: Sphere Packings. Springer, New York (1999)

Download references

Acknowledgements

The authors wish to thank Dr. Eric Dow for reviewing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savithru Jayasinghe.

Additional information

This research was supported through a Research Agreement with Saudi Aramco, a Founding Member of the MIT Energy Initiative (http://mitei.mit.edu/), with technical monitors Dr. Ali Dogru and Dr. Nicholas Burgess.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayasinghe, S., Darmofal, D.L., Burgess, N.K. et al. A space-time adaptive method for reservoir flows: formulation and one-dimensional application. Comput Geosci 22, 107–123 (2018). https://doi.org/10.1007/s10596-017-9673-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9673-9

Keywords

Navigation