Skip to main content
Log in

Solving 2D Reaction-Diffusion Equations with Nonlocal Boundary Conditions by the RBF-MLPG Method

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

This paper is concerned with the development of a new approach for the numerical solution of linear and nonlinear reaction-diffusion equations in two spatial dimensions with Bitsadze-Samarskii type nonlocal boundary conditions. Proper finite-difference approximations are utilized to discretize the time variable. Then, the weak equations of resultant elliptic type PDEs are constructed on local subdomains. These local weak equations are discretized by using the multiquadric (MQ) radial basis function (RBF) approximation where an iterative procedure is proposed to treat the nonlinear terms in each time step. Numerical test problems are given to verify the accuracy of the obtained numerical approximations and stability of the proposed method versus the parameters of the nonlocal boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shirzadi, V. Sladek, J. Sladek, “A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation,” Eng. Anal. Bound. Elem., 37, 8–14 (2013).

    Article  MathSciNet  Google Scholar 

  2. S. Abbasbandy, V. Sladek, A. Shirzadi, J. Sladek, “Numerical simulations for coupled pair of diffusion equations by mlpg method,” CMES Comput. Model. Eng. Sci., 71, No. 1, 15–37 (2011).

    MathSciNet  MATH  Google Scholar 

  3. A. Shirzadi, “Meshless local integral equations formulation for the 2d convection- diffusion equations with a nonlocal boundary condition,” CMES Comput. Model. Eng. Sci., 85, No. 1, 45–63 (2012).

    MathSciNet  Google Scholar 

  4. I. Dag, Y. Dereli, “Numerical solution of rlw equation using radial basis functions,” Int. J. Comput. Math., 87, No. 1, 63–76 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. G. Ahmed, M. L. Mekey, “A collocation and cartesian grid methods using new radial basis function to solve class of partial differential equations,” Int. J. Comput. Math., 87, No. 6, 1349–1362 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Dereli, “Radial basis functions method for numerical solution of the modified equal width equation,” Int. J. Comput. Math., 87, No. 7, 1569–1577 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. Q. Shen, “Numerical solution of the Sturm–Liouville problem with local rbf-based differential quadrature collocation method,” Int. J. Comput. Math., 88, No. 2, 285–295 (2011).

    MathSciNet  MATH  Google Scholar 

  8. A. Shirzadi, L. Ling, S. Abbasbandy, “Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations,” Eng. Anal. Bound. Elem., 36, No. 11, 1522–1527 (2012).

    Article  MathSciNet  Google Scholar 

  9. J. Rad, S. Kazem, K. Parand, “A numerical solution of the nonlinear controlled duffing oscillator by radial basis functions,” Comput. Math. Appl., 64, No. 6, 2049–2065 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Atluri, T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech., 22, No. 2, 117–127 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Atluri, T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation,” Comput. Model. Simul. Eng., 3, 187–196 (2009).

    Google Scholar 

  12. M. Dehghan, D. Mirzaei, “Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity,” Appl. Numer. Math., 59, No. 5, 1043–1058 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Mirzaei, M. Dehghan, “A meshless based method for solution of integral equations,” Appl. Numer. Math., 60, No. 3, 245–262 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Sladek, V. Sladek, Y. Hon, “Inverse heat conduction problems by meshless local Petrov-Galerkin method,” Eng. Anal. Bound. Elem., 30, No. 8, 650–661 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Dehghan, D. Mirzaei, “The boundary integral equation approach for numerical solution of the one-dimensional sine-gordon equation,” Numer. Methods Partial Differ. Equa., 24, No. 6, 1405–1415 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Shirzadi, L. Ling, Convergent overdetermined-RBF-MLPG for solving second order elliptic PDEs, Adv. Appl. Math. Mech., accepted for publication.

  17. A. Bitsadze, A. Samarskii, “On some simple generalizations of linear elliptic boundary problems,” Sov. Math. Dokl., 10, 398–400 (1969).

    MATH  Google Scholar 

  18. V. Il’in, E. Moiseev, “Nonlocal boundary value problem of the first kind for a Sturm–Liouville operator in its differential and finite difference aspects,” Differ. Equ., 23, 803–810 (1987).

    MATH  Google Scholar 

  19. V. Il’in, E. Moiseev, “Nonlocal boundary value problem of the second kind for a Sturm–Liouville operator,” Differ. Equ., 23, 979–987 (1987).

    MATH  Google Scholar 

  20. A. Bastys, F. Ivanauskas, M. Sapagovas, “An explicit solution of a parabolic equation with nonlocal boundary conditions,” Lith. Math. J., 45, 257–271 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Ivanauskas, T. Meskauskas, M. Sapagovas, “Stability of difference schemes for two- dimensional parabolic equations with nonlocal boundary conditions,” Appl. Math. Comput., 215, 2716–2732 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Abbasbandy, A. Shirzadi, “A meshless method for two-dimensional diffusion equation with an integral condition,” Eng. Anal. Bound. Elem., 34, No. 12, 1031–1037 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  23. “On the solution of the non-local parabolic partial differential equations via radial basis functions,” Appl. Math. Model., 33, No. 3, 1729–1738 (2009).

  24. M. Dehghan, M. Ramezani, “Composite spectral method for solution of the diffusion equation with specification of energy,” Numer. Methods Partial Differ. Equ., 24, No. 3, 950–959 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Abbasbandy, A. Shirzadi, “MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions,” Appl. Numer. Math., 61, 170–180 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  26. B. J. Noye, M. Dehghan, “New explicit finite difference schemes for two-dimensional diffusion subject to specification of mass,” Numer. Methods Partial Differ. Equ., 15, No. 4, 521–534 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Atluri, H.-G. Kim, J. Y. Cho, “A critical assessment of the truly meshless local Petrov-Galerkin (MLPG) and local boundary integral equation (LBIE) methods,” Comput. Mech., 24, 348–372 (1999).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shirzadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirzadi, A. Solving 2D Reaction-Diffusion Equations with Nonlocal Boundary Conditions by the RBF-MLPG Method. Comput Math Model 25, 521–529 (2014). https://doi.org/10.1007/s10598-014-9246-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-014-9246-x

Keywords

Navigation