Skip to main content
Log in

Combining Tree Partitioning, Precedence, and Incomparability Constraints

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

The tree constraint partitions a directed graph into node-disjoint trees. In many practical applications that involve such a partition, there exist side constraints specifying requirements on tree count, node degrees, or precedences and incomparabilities within node subsets. We present a generalisation of the tree constraint that incorporates such side constraints. The key point of our approach is to take partially into account the strong interactions between the tree partitioning problem and all the side constraints, in order to avoid thrashing during search. We describe filtering rules for this extended tree constraint and evaluate its effectiveness on three applications: the Hamiltonian path problem, the ordered disjoint paths problem, and the phylogenetic supertree problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho, A., Sagiv, Y., Szymanski, T., & Ullman, J. D. (1981). Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal of Computing, 10(3), 405–421.

    Article  MATH  MathSciNet  Google Scholar 

  2. Beldiceanu, N., Carlsson, M., & Rampon, J.-X. (2005). Global constraint catalog. Research Report T2005-08, Swedish Institute of Computer Science.

  3. Beldiceanu, N., Flener, P., & Lorca, X. (2005). The tree constraint. In Proceedings of CP-AI-OR ’05, LNCS (Vol. 3524, pp. 64–78). Springer.

  4. Beldiceanu, N., Flener, P., & Lorca, X. (2006). Combining tree partitioning, precedence, incomparability, and degree constraints, with an application to phylogenetic and ordered-path problems. Technical Report 2006-020, Department of Information Technology, Uppsala University, Sweden. Available at http://www.it.uu.se/research/publications/reports/2006-020/.

  5. Beldiceanu, N., Flener, P., & Lorca, X. (2006). Partitionnement de graphes par des arbres sous contraintes de degré. In Deuxièmes Journées Francophones de Programmation par Contraintes (JFPC’06) (pp. 35–42). (in French).

  6. Beldiceanu, N., & Lorca, X. (2007). Necessary condition for path partitioning constraints. In Proceedings of CP-AI-OR’07, LNCS (Vol. 4510, pp. 141–154). Springer.

  7. Bininda-Emonds, O., Gittleman, J., & Steel, M. (2002). The (super)tree of life: Procedures, problems, and prospects. Annual Reviews of Ecological Systems, 33, 265–289.

    Article  Google Scholar 

  8. Bodirsky, M., Duchier, D., Miehle, S., & Niehren, J. (2004). A new algorithm for normal dominance constraints. In Proceedings of SODA’04, (pp. 59–67).

  9. Bodirsky, M., & Kutz, M. (2007). Determining the consistency of partial tree descriptions. Artificial Intelligence, 171, 185–196.

    Article  MathSciNet  Google Scholar 

  10. Bourreau, E. (1999). Traitement de contraintes sur les graphes en programmation par contraintes. Ph.D. thesis, University of Paris 13, France (March). In French.

  11. Cambazard, H., & Bourreau, E. (2004). Conception d’une contrainte globale de chemin. In Proceedings of the Dixièmes Journées Nationales sur la Résolution Pratique de Problèmes NP-Complets (JNPC’04) (pp. 107–120). (in French).

  12. Cayley, A. (1889). A theorem on trees. Quarterly Journal of Mathematics, 23, 376–378.

    Google Scholar 

  13. Cooper, K., Harvey, T., & Kennedy, K. (2001). A simple, fast dominance algorithm. Software Practice and Experience, 31(4), 1–10.

    Google Scholar 

  14. COSYTEC. (1997). CHIP Reference Manual, release 5.1 edition.

  15. Dooms, G., Deville, Y., & Dupont, P. E. (2005). CP(Graph): Introducing a graph computation domain in constraint programming. In Proceedings of CP’05, LNCS (Vol. 3709, pp. 211–225).

  16. Garey, M. R., & Johnson, D. S. (1978). Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York.

    Google Scholar 

  17. Gent, I., Prosser, P., Smith, B., & Wei, W. (2003). Supertree construction with constraint programming. In Proceedings of CP’03, LNCS (Vol. 2833, pp. 837–841).

  18. Katriel, I. (2006). Expected-case analysis for delayed filtering. In Proceedings of CP-AI-OR’06, LNCS (Vol. 3990, pp. 119–125). Springer-Verlag.

  19. Kennedy, M., & Page, R. D. (2002). Seabird supertrees: Combining partial estimates of procellariiform phylogeny. The Auk, A Quarterly Journal of Ornithology, 119, 88–108.

    Google Scholar 

  20. Komlós, J., & Szemerédi, E. (1983). Limit distribution for the existence of a Hamilton cycle in a random graph. Discrete Mathematics, 43, 55–63.

    Article  MATH  MathSciNet  Google Scholar 

  21. Lengauer, T., & Tarjan, R. E. (1979). A fast algorithm for finding dominators in a flowgraph. ACM Transactions on Programming Languages and Systems, 1(1), 121–141.

    Article  MATH  Google Scholar 

  22. Lorca, X. (2007). Contraintes de Partitionnement de Graphe. Ph.D. thesis, Université de Nantes, École des Mines, Nantes, France (in French).

  23. Ng, M., & Wormald, N. (1996). Reconstruction of rooted trees from subtrees. Discrete Applied Mathematics, 69, 19–31.

    Article  MATH  MathSciNet  Google Scholar 

  24. Pape, C. L., Perron, L., Régin, J.-C., & Shaw, P. (2002). Robust and parallel solving of a network design problem. In Proceedings of CP’02, LNCS (Vol. 2470, pp. 633–648). Springer-Verlag.

  25. Pósa, L. (1976). Hamiltonian circuits in random graphs. Discrete Mathematics, 14, 359–364.

    Article  MATH  MathSciNet  Google Scholar 

  26. Quesada, L. (2006). Solving Constrained Graph Problems Using Reachability Constraints Based on Transitive Closure and Dominators. Ph.D. thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium.

  27. Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSP. In Proceedings of AAAI’94 (pp. 362–367).

  28. Régin, J.-C. (1996). Generalized arc consistency for global cardinality constraint. In Proceedings of AAAI’96 (pp. 209–215).

  29. Richaud, G., Lorca, X., & Jussien, N. (2007). A portable and efficient implementation of global constraints: The tree constraint case. In Abreu, S. & Costa, V. S. (eds.), Proceedings of CICLOPS’07, Porto, Portugal (September).

  30. Schulte, C., Lagerkvist, M., & Tack, G. (2006). Gecode. Available at http://www.gecode.org/.

  31. Steel, M. (1992). The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 9, 91–116.

    Article  MATH  MathSciNet  Google Scholar 

  32. Tutte, W. T. (1946). On Hamiltonian circuits. Journal of the London Mathematical Society, 21, 98–101.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Flener.

Additional information

Some of this work was done while the second author was Visiting Faculty Member and Erasmus Exchange Teacher at Sabancı University in İstanbul, Turkey, during the academic year 2006/2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beldiceanu, N., Flener, P. & Lorca, X. Combining Tree Partitioning, Precedence, and Incomparability Constraints. Constraints 13, 459–489 (2008). https://doi.org/10.1007/s10601-007-9040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-007-9040-x

Keywords

Navigation