Skip to main content

Advertisement

Log in

DNA Databases as Alternative Data Sources for Criminological Research

  • Published:
European Journal on Criminal Policy and Research Aims and scope Submit manuscript

Abstract

DNA traces found at crime scenes and DNA records held in databases have already helped the police to solve numerous investigations into specific crimes. The police clearly benefit from the use of forensic science at an operational (i.e. case) level. This paper focuses on the use of forensic DNA at a strategic level: its use in the study of patterns of criminal behaviour. The usual sources of information for this type of research are recorded crime data, self-report studies and victimization surveys. However, as our review will show, these data sources cannot provide a complete picture of crime. We therefore propose an alternative approach to criminological research that takes into account DNA databases and has the potential to augment current methods and extend the existing knowledge beyond known offenders. The use of DNA databases has an important advantage for criminological research: it is possible to link offences committed by the same individual, whether the offender’s identity is known or not. By making a one-on-one comparison of police data with the corresponding DNA data, not only can co-offenders be studied, but a larger network of offenders connected to each other can also be analysed, even if their identity is unknown to the police.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The NGO Forensic Genetics Policy Initiative […] was founded in 2010 to address the imbalance between the legitimate needs of law enforcement and individual rights with regards to DNA collection and use.” (Forensic Genetics Policy Initiative).

  2. The debate about whose profiles (i.e. which specific crimes) should be stored in a DNA database and for how long is beyond the scope of this paper.

  3. GeneWatch UK is a not-for-profit policy research and public interest group that monitors developments in genetic technologies. See: http://www.genewatch.org.

  4. The term ‘self-report surveys’ usually refers to ‘self-report offending surveys’ (Tilley and Townsley 2009, p. 15); however, it is also sometimes used in the context of ‘self-report surveys of ss’ (Cantor and Lynch 2000). Thus, offending and victimization measures may be surveyed using common methodological features (Goethals et al. 2002). In this paper the two types of survey will therefore be discussed together, but with any differences highlighted.

  5. For a detailed discussion of the problems typical of survey research, we refer to Gideon (2012), de Leeuw et al. (2008) and Dillman et al. (2014).

  6. Match probability refers to the chance of two unrelated persons sharing the same DNA profile.

  7. Loci are not coding parts of the DNA that vary strongly between different persons. The more loci used to compare DNA profiles, the less chance of false positives.

  8. Although the study of how (certain types of) criminal behaviour could be influenced by a person’s genes is part of the fourth type of research, the study of the genetic links to criminal behaviour is beyond the scope of this article.

  9. The reference profiles stored in DNA databases are derived from an offender, a suspect or a victim. When studying offending patterns, only offender profiles must be taken into account as a suspect may not have commit any crime. Logically, victims also need to be excluded in that case. However, depending on the type of analysis, it may be interesting to also include the reference profiles of victims or suspects. For example when studying networks and the relation between the offender/suspect and the victim. In the context of this paper, only the profiles of offenders are of interest.

  10. An important difference with operational research is that the data can be coded or even anonymised for scientific research.

  11. Besides the 28 EU countries, Iceland, Liechtenstein, Norway and Switzerland are also permitted to join the Prüm operation. Currently, only about 20 countries are exchanging DNA-profiles with other countries. Many countries are not ready yet for the automated searches due to a still pending application or practical issues like software (van der Beek 2011).

References

  • Alarid, L. F., Burton, V. S., Jr., & Hochstetler, A. L. (2009). Group and solo robberies: do accomplices shape criminal form? Journal of Criminal Justice, 37, 1–9.

    Article  Google Scholar 

  • Babinski, L. M., Hartsough, C. S., & Lambert, N. M. (2001). A comparison of self-report of criminal involvement and official arrest record. Aggressive Behavior, 27, 44–54.

    Article  Google Scholar 

  • Balding, D. (1999). When can a DNA profile be regarded as unique? Science & Justice, 39, 257–260.

    Article  Google Scholar 

  • Barash, M., Reshef, A., & Brauner, P. (2010). The use of adhesive tape for recovery of DNA from crime scene items. Journal of Forensic Science, 55(4), 1058–1064.

    Article  Google Scholar 

  • Beauregard, E., & Bouchard, M. (2010). Cleaning up your act: forensic awareness as a detection avoidance strategy. Journal of Criminal Justice, 38(6), 1160–1166.

    Article  Google Scholar 

  • Beaver, K. M. (2014). The promises and pitfalls of forensic evidence in unsolved crimes. Criminology & Public Policy, 9(2), 405–410.

    Article  Google Scholar 

  • Bernasco, W. (2006). Co-offending and the choice of target areas in burglary. Journal of Investigative Psychology and Offender Profiling, 3, 139–155.

    Article  Google Scholar 

  • Bernasco, W. (2008). Them Again? Same-offender involvement in repeat and near repeat burglaries. European Journal of Criminology, 5(4), 411–431.

    Article  Google Scholar 

  • Bond, J. W. (2007). Value of DNA evidence in detecting crime. Journal of Forensic Science, 52(1), 128–136.

    Article  Google Scholar 

  • Bramley, B. (2009). DNA databases. In J. Fraser & R. Williams (Eds.), Handbook of forensic science, pp. 309–336. Devon: Willian Publishing.

    Google Scholar 

  • Brantingham, P. L., & Brantingham, P. J. (1993). Nodes, paths and edges: considerations on the complexity of crime and the physical environment. Journal of Environmental Psychology, 13, 3–28.

    Article  Google Scholar 

  • Bright, J.-A., Curran, J. M., & Buckleton, J. S. (2014). The effect of the uncertainty in the number of contributors to mixed DNA profiles on profile interpretation. Forensic Science International: Genetics, 12, 208–2014.

    Article  Google Scholar 

  • Burrows, J., & Tarling, R. (2004). Measuring the impact of forensic science in detecting burglary and autocrime offences. Science and Justice, 44(4), 217–222.

    Article  Google Scholar 

  • Cantor, D., & Lynch, J. P. (2000). Self-report surveys as measures of crime and criminal victimization. Criminal Justice, 4, 85–138.

    Google Scholar 

  • Carcach, C. (1997). Reporting crime to the police trends & issues in crime and criminal justice (pp. 1–6). Canberra: Australian Institute of Criminology.

    Google Scholar 

  • Carrington, P. J. (2014). Co-offending. Encyclopedia of Criminology and Criminal Justice, 548–558.

  • Chattoe, E., & Hamill, H. (2005). It’s not who you know—it’s what you know about people you don’t know that counts. extending the analysis of crime groups as social networks. British Journal of Criminology, 45(6), 860–876.

    Article  Google Scholar 

  • Costello, A., & Wiles, P. (2001). GIS and the journey to crime. An analysis of patterns in South Yorkshire. In A. Hirschfield & K. Bowers (Eds.), Mapping and analysing crime data. Lessons from research and practice (pp. 27–60). London: Taylor & Francis.

    Google Scholar 

  • Council of the European Union. (2005). Prüm Convention. 1-44.

  • Council of the European Union. (2008a). Council decision 2008/615/JHA. 1-11.

  • Council of the European Union. (2008b). Council decision 2008/616/JHA. 1-11.

  • Dahl, J. Y., & Saetnan, A. R. (2009). “It all happened so slowly” - on controlling function creep in forensic DNA databases. International Journal of Law Crime and Justice, 37(3), 83–103. doi:10.1016/j.ijlcj.2009.04.002.

    Article  Google Scholar 

  • De Gorgey, A. (1990). The advent of DNA databanks: implications for information privacy. American Journal of Law and Medicine, 16(3), 381–398.

    Google Scholar 

  • de Leeuw, E. D., Hox, J. J., & Dillman, D. A. (2008). The international handbook of survey methodology. New York: Taylor & France Group.

    Google Scholar 

  • De Wree, E., Vermeulen, G., & Christiaens, J. (2006). (Strafbare) overlast door jongerengroepen in het kader van openbaar vervoer. Antwerpen.

  • Devroe, E., Beyens, K., & Enhus, E. (Eds.). (2006). Zwart op wit? Duiding van cijfers over onveiligheid en strafrechtsbedeling in België. Handboek criminografische basisinformatie. Brussel: VUBPress.

    Google Scholar 

  • Dillman, D. A. (1991). The design and administration of mail surveys. Annual Review of Sociology, 17, 225–249.

    Article  Google Scholar 

  • Dillman, D. A. (2000). Mail and internet surveys: The tailored design method (2nd ed.). London: Wiley.

    Google Scholar 

  • Dillman, D. A., Smyth, J. D., & Christian, L. M. (2014). Internet, phone, mail and mixed-mode surveys. The tailored design method (fourth ed.). New York: Wiley.

  • Doleac, J. L. (2016). The effects of DNA databases on crime. 1–46. doi:10.2139/ssrn.2556948.

  • Eck, J. E., & Weisburd, D. (1995). Crime places in crime theory. Crime and place, crime prevention studies, 4, 1–33.

    Google Scholar 

  • Everson, S. (2003). Repeat victimisation and prolific offending: chance or choice? International Journal of Police Science & Management, 5(3), 180–194.

    Article  Google Scholar 

  • Farrington, D. P., Jolliffe, D., Hawkins, J. D., Catalano, R. F., Hill, K. G., & Kosterman, R. (2003). Comparing delinquency careers in court records and self-reports. Criminology, 41(3), 933–958.

    Article  Google Scholar 

  • Farrington, D. P., Coid, J. W., Harnett, L. M., Jolliffe, D., Soteriou, N., Turner, R. E., & West, D. J. (2006). Criminal careers up to age 50 and life success up to age 48: new findings from the Cambridge Study in Delinquent Development. In H. Office (Ed.), Home Office Research Studies (pp. 87). London.

  • Felson, M. (2003). The process of co-offending. Crime Prevention Studies, 16, 149–167.

    Google Scholar 

  • Ferwerda, H. (2013). Serieplegers. In A. van Wijk (Ed.), Serieplegers. Kenmerken, achtergronden en opsporing (pp. 9–14). Boom Lemma Uitgevers: Den Haag.

    Google Scholar 

  • Forensic Genetics Policy Initiative. About us. Retrieved 6 August 2014, from http://dnapolicyinitiative.org/.

  • Forensic Science and Pathology Unit. (2005). DNA expansion programme 2000–2005: Reporting achievement. In Home Office (Ed.). London.

  • Fox, C. (2010). Developing an offender problem profile. Safer Communities, 9(3), 17–27.

    Article  Google Scholar 

  • Frank, O. (2001). Statistical estimation of co-offending youth networks. Social Networks, 23, 203–214.

    Article  Google Scholar 

  • Gartner, R., & Macmillan, R. (1995). The effect of victim-offender relationship on reporting crimes of violence against women. Canadian Journal of Criminology, 393, 393–429.

    Google Scholar 

  • GeneWatch UK. (2006). The DNA expansion programma: reporting real achievement? GeneWatch UK Briefing.

  • Gideon, L. (Ed.). (2012). Handbook of survey methodology for the social sciences. New York: Springer.

    Google Scholar 

  • Goethals, J., Ponsaers, P., Beyens, K., Pauwels, L., & Devroe, E. (2002). Criminografisch onderzoek in België. In K. Beyens, J. Goethals, P. Ponsaers, & G. Vervaeke (Eds.), Criminologie in actie. Handboek criminografisch onderzoek (pp. 137–188). Politeia: Brussel.

    Google Scholar 

  • Goldweber, A., Dmitrieva, J., Cauffman, E., Piquero, A. R., & Steinberg, L. (2011). The development of criminal style in adolescence and young adulthood: separating the lemmings from the loners. Journal of Youth and Adolescence, 40, 332–346.

    Article  Google Scholar 

  • Gottfredson, M. R., & Hindelang, M. J. (1977). A consideration of telescoping and memory decay biases in victimization surveys. Journal of Criminal Justice, 5(3), 205–216.

    Article  Google Scholar 

  • Goudriaan, H., Lynch, J. P., & Nieuwbeerta, P. (2003). Aangifte doen bij de politie? De invloed van de nationale context op het aangiftegedrag van slachtoffers van criminaliteit in zestien westerse landen. Tijdschrift voor Criminologie, 45(2), 35–52.

    Google Scholar 

  • Grapendaal, M., & van Tilburg, W. (2002). Veelplegers in Nederland. Tijdschrift voor Criminologie, 44(3), 214–230.

    Google Scholar 

  • Greely, H. T., Riordan, D. P., Garrison, N. A., & Mountain, J. L. (2006). Family ties: the use of DNA offender databases to catch offenders? Journal of Law, Medicine & Ethics, 34(2), 248–262.

    Article  Google Scholar 

  • Haen Marschall, I. (1996). De methode van zelfrapportage. Aanzet tot rationele benadering. Tijdschrift voor Criminologie, 38(1), 2–20.

    Google Scholar 

  • Hindelang, M. J., Hirschi, T., & Weis, J. G. (1979). Correlates of delinquency: the illusion of discrepancy between selfreport and official measures. American Sociological Review, 44(6), 995–1014.

    Article  Google Scholar 

  • Hindelang, M. J., Hirschi, T., & Weis, J. G. (1981). Measuring delinquency. Beverly Hills.

  • Hochschild, J. L., & Sen, M. (2012). DNA and criminal justice: public opinion on a new policy. Paper presented at the Midwest Political Science Association Conference, Chicago.

  • Home Office. (2004). The Home Office Strategic Plan 2004-2008. London.

  • Huizinga, D., Esbensen, F.-A., & Weiher, A. W. (1991). Are there multiple paths to delinquency? The Journal of Criminal Law & Criminology, 82(1), 83–118.

    Article  Google Scholar 

  • Jeuniaux, P., Duboccage, L., Renard, B., Van Renterghem, P., & Vanvooren, V. (2015). Establishing networks in a forensic DNA database to gain operational and strategic intelligence. Security Journal. doi: 10.1057/sj.2015.31.

  • Jobling, M. A., & Gill, P. (2004). Encoded evidence: DNA in forensic analysis. Nature Reviews Genetics, 5, 739–752.

    Article  Google Scholar 

  • Johnson, D. (2013). The space/time behaviour of dwelling burglars: finding near repeat patterns in serial offender data. Applied Geography, 41, 139–146.

    Article  Google Scholar 

  • Junger-Tas, J., & Haen Marshall, I. (1999). The self-report methodology in crime research. Crime and Justice, 25, 291–367.

    Article  Google Scholar 

  • Kazemian, L., Pease, K., & Farrington, D. P. (2011). DNA retention policies: the potential contribution of criminal career research. European Journal of Criminology, 8(1), 48–64.

    Article  Google Scholar 

  • Kirk, D. S. (2006). Examining the divergence across self-report and official data sources on inferences about the adolescent life-course of crime. Journal of Quantitative Criminology, 22, 107–129.

    Article  Google Scholar 

  • Kivivuori, J. (2011). The discovery of hidden crime: Self-report delinquency surveys in criminal policy context. New York: Oxford University Press.

    Book  Google Scholar 

  • Kloosterman, A., Sjerps, M., & Quak, A. (2014). Error rates in forensic DNA analysis: definition, numbers, impact and communication. Forensic Science International: Genetics, 12, 77–85.

    Article  Google Scholar 

  • Kocsis, R. N., & Irwin, H. J. (1998). The psychological profile of serial offenders and a redefinition of the misnomer of serial crime. Psychiatry, Psychology and Law, 5(2), 197–213.

    Article  Google Scholar 

  • Lammers, M. (2013). Catch me if you can. Using DNA traces to study the influence of offending behaviour on the probability of arrest. Amsterdam: Vrije Universiteit Amsterdam.

    Google Scholar 

  • Lammers, M. (2014). Are arrested and non-arrested serial offenders different? A test of spatial offending patterns using DNA found at crime scenes. Journal of Research in Crime and Delinquency, 51(2), 143–167.

    Article  Google Scholar 

  • Lammers, M., & Bernasco, W. (2013). Are mobile offenders less likely to be caught? The influence of the geographical dispersion of serial offenders’ crime locations on their probability of arrest. European Journal of Criminology, 10(2), 168–186.

    Article  Google Scholar 

  • Lammers, M., Bernasco, W., & van de Beek, K. (2011). Criminologisch onderzoek met DNA-sporen. Panopticon, 2, 39–53.

    Google Scholar 

  • Lammers, M., Bernasco, W., & Elffers, H. (2012). How long do offenders escape arrest? Using DNA traces to analyse when serial offenders are caught. Journal of Investigative Psychology and Offender Profiling, 9, 13–29.

    Article  Google Scholar 

  • Leary, D., & Pease, K. (2003). DNA and the active criminal population. Crime Prevention and Community Safety: An International Journal, 5, 7–12.

    Article  Google Scholar 

  • Lee, J. W., Lee, H.-S., Park, M., & Hwang, J.-J. (2001). Evaluation of DNA match probability in criminal case. Forensic Science International, 116, 139–148.

    Article  Google Scholar 

  • Legrand, T., & Vogel, L. (2014). The landscape of forensic intelligence research. Australian Journal of Forensic Sciences, 1–11.

  • Levitt, M. (2007). Forensic databases: benefits and ethical and social costs. British Medical Bulletin, 83, 235–248.

    Article  Google Scholar 

  • Lynch, M. (2003). God’s signature: DNA profiling, the new gold standard in forensic science. Endeavour, 27(2), 93–97.

    Article  Google Scholar 

  • Machado, H., & Silva, S. (2014). “Would you accept having your DNA profile inserted in the National Forensic DNA database? Why?” Results of a questionnaire applied in Portugal. Forensic Science International: Genetics, 8, 132–136.

    Article  Google Scholar 

  • Malsch, M., Taverne, M. D., Elffers, H., de Keijser, J. W., & Kranendonk, P. R. (2013). DNA rapporten: makkelijker kunnen we het niet maken, begrijpelijker wel. Den Haag.

  • Martin, P. D. (2004). National DNA databases—practice and practicability. a forum for discussion. International Congress Series, 1261, 1–8.

    Article  Google Scholar 

  • Martin, P. D., Schmitter, H., & Schneider, P. M. (2001). A brief history of the formation of DNA databases in forensic science within Europe. Forensic Science International, 119, 225–231.

    Article  Google Scholar 

  • Maxfield, M. G., Luntz Weiler, B., & Spatz Widom, C. (2000). Comparing self-reports and official records of arrests. Journal of Quantitative Criminology, 13(1), 87–110.

    Article  Google Scholar 

  • McCartney, C. I. (2004). Forensic DNA sampling and the England and Wales National DNA Database: a sceptical approach. Critical Criminology, 12, 157–178.

    Article  Google Scholar 

  • McCartney, C. I., Wilson, T. J., & Williams, R. (2011). Transnational exchange of forensic DNA: viability, legitimacy, and acceptability. European Journal on Criminal Policy and Research, 17, 305–322.

    Article  Google Scholar 

  • McGloin, J. M., & Nguyen, H. (2014). The importance of studying co-offending networks for criminological theory and policy. In C. Morselli (Ed.), Crime and networks (pp. 13–27). Oxon: Taylor & Francis.

    Google Scholar 

  • McGloin, J. M., & Stickle, W. P. (2011). Influence or convenience? Disentangling peer influence and co-offending for chronic offenders. Journal of Research in Crime and Delinquency, 48(3), 419–447.

    Article  Google Scholar 

  • McGloin, J. M., Sullivan, C. J., Piquero, A. R., & Pratt, T. C. (2007). Local life circumstances and offending specialization/versatility: comparing opportunity and propensity models. Journal of Research in Crime and Delinquency, 44(3), 321–346.

    Article  Google Scholar 

  • Meijer, R. F., van Panhuis, P., Siero, S., & Smit, P. (2002). Elf procent verdachten verantwoordelijk voor 20 of 60 procent van de criminaliteit? Tijdschrift voor Criminologie, 44(3), 282–284.

    Google Scholar 

  • Meulenbroek, A. J. (2009). De essenties van forensisch biologisch onderzoek. Humane biologische sporen en DNA. Paris: Zutphen.

    Google Scholar 

  • Ministerraad. (2012). Nationaal Veiligheidsplan 2012-2015.

  • Morelato, M., Baechler, S., Ribaux, O., Beavis, A., Tahtouh, M., Kirkbride, P., & Margot, P. (2014). Forensic intelligence framework—part i: induction of a transversal model by comparing illicit drugs and false identity documents monitoring. Forensic Science International, 236, 181–190.

    Article  Google Scholar 

  • National DNA Database. (2004) The National DNA Database annual report 03/04. London.

  • Nazaretian, Z., & Merolla, D. M. (2013). Questioning Canadian criminal incidence rates: a re-analysis of the 2004 Canadian victimization survey. Canadian Journal of Criminology and Criminal Justice, 55(2), 239–261.

    Article  Google Scholar 

  • Ouellet, F., Boivin, R., Leclerc, C., & Morselli, C. (2013). Friends with(out) benefits: co-offending and re-arrest. Global Crime, 14(2-3), 141–154.

    Article  Google Scholar 

  • Paternoster, R. (2014). Career criminals and criminological theory. Encyclopedia of Criminology and Criminal Justice, 276-285.

  • Pauwels, L., & Hardyns, W. (2014). Criminaliteit en onveiligheid in cijfers. Gent: Een ontleding van criminografische databanken. UGent.

    Google Scholar 

  • Penacino, G., Sala, A., & Corach, D. (2003). Are DNA tests infallible? International Congress Series, 1239, 873–877.

    Article  Google Scholar 

  • Prainsack, B., & Toom, V. (2013). Performing the Union: the Prüm decision and the European dream. Studies in History and Philosophy of Biological and Biomedical Sciences, 44, 71–79.

    Article  Google Scholar 

  • Raymond, J. J., van Oorschot, R. A. H., Gunn, P. R., Walsh, S. J., & Roux, C. (2004). Trace evidence characteristics of DNA: a preliminary investigation of the persistence of DNA at crime scenes. Forensic Science International: Genetics, 4, 26–33.

    Article  Google Scholar 

  • Reiss, A. J. (1988). Co-offending and criminal careers. Crime and Justice, 10, 117–170.

    Article  Google Scholar 

  • Ribaux, O., & Margot, P. (2003). Case based reasoning in criminal intelligence using forensic case data. Science and Justice, 43(3), 135–143.

    Article  Google Scholar 

  • Ribaux, O., Girod, A., Walsh, S. J., Margot, P., Mizrahi, S., & Clivaz, V. (2003). Forensic intelligence and crime analysis. Law, Probability and Risk, 2, 47–60.

    Article  Google Scholar 

  • Ribaux, O., Walsh, S. J., & Margot, P. (2006). The contribution of forensic science to crime analysis and investigation: Forensic intelligence. Forensic Science International, 156, 171–181.

    Article  Google Scholar 

  • Ribaux, O., Baylon, A., Lock, E., Delémont, O., Roux, C., Zingg, C., & Margot, P. (2010a). Intelligence-led crime scene processing. part II: intelligence and crime scene examination. Forensic Science International, 199(1-3), 63–71.

    Article  Google Scholar 

  • Ribaux, O., Baylon, A., Roux, C., Delémont, O., Lock, E., Zingg, C., & Margot, P. (2010b). Intelligence-led crime scene processing. part I : FORENSIC intelligence. Forensic Science International, 195(1-3), 10–16.

    Article  Google Scholar 

  • Roman, J. K., Reid, S., Reid, J., Chalfin, A., Adams, W., & Knight, C. (2008). The DNA field experiment: Cost-effectiveness analysis of the use of DNA in the investigation of high-volume crimes (pp. 158). Washington: Urban Institute.

  • Rossy, Q., Ioset, S., Dessimoz, D., & Ribaux, O. (2013). Integrating forensic information in a crime intelligence database. Forensic Science International, 230(1-3), 137–146.

    Article  Google Scholar 

  • Rothstein, M. A., & Talbott, M. K. (2006). The expanding use of DNA in law enforcemenft. what role for privacy? Journal of Law, Medicine & Ethics, 34(2), 153–164.

    Article  Google Scholar 

  • s.a. (2014). De samenleving veiliger maken. Durf denken. Communitymagazine van de UGent, 4, 24-27.

  • Santos, R. B. (2013). Crime analysis with crime mapping. Los Angeles: Sage.

    Google Scholar 

  • Sellin, T. (1931). The basis of a crime index. Journal of Criminal Law and Criminology, 22, 335–356.

    Google Scholar 

  • Skogan, W. G. (1984). Reporting crimes to the police: the status of world research. Journal of Research in Crime and Delinquency, 21(2), 113–137.

    Article  Google Scholar 

  • Smith, M. E. (2006). Let’s make the DNA identification database as inclusive a possible. Journal of Law, Medecine & Ethics, 34(2), 385–389.

    Article  Google Scholar 

  • Song, Y. S., Patil, A., Murphy, E. E., & Slatkin, M. (2009). Average probability that a “cold hit” in a DNA database search results in a erroneous attribution. Journal of Forensic Science, 54(1), 22–27.

    Article  Google Scholar 

  • Staley, K. (2005). The Police National DNA database: balancing crime detection, human rights and privacy. In GeneWatch UK (Ed.). Buxton.

  • Struijk, S. (2009). De nieuwe ISD-maatregel. Een kritische verkenning van wetgeving en praktijk. Proces. Maandblad voor Berechting en Reclassering, 1–12.

  • Thompson, W. C. (2008). The potential for error in forensic DNA testing (and how that complicates the use of DNA databases for criminal identification) Paper presented at the Forensic DNA Databases and Race: Issues, Abuses and Actions, New York.

  • Thornberry, T. P., & Krohn, M. D. (2000). The self-report method for measuring delinquency and crime. Criminal Justice, 4, 33–83.

    Google Scholar 

  • Tilley, N., & Townsley, M. (2009). Forensic science in UK policing: strategies, tactics and effectiveness. In J. Fraser & R. Williams (Eds.), Handbook of forensic science, pp. 359-379. London: Willan.

  • Townsley, M., Smith, C., & Pease, K. (2005). Using DNA to catch offenders quicker: Serious detections arising from criminal justice samples. London: Jill Dando Institute of Crime Science, University College London.

    Google Scholar 

  • Townsley, M., Smith, C., & Pease, K. (2006). First impressions count: serious detections arising from criminal justice samples. Genomics, Society and Policy, 2(1), 28–40.

    Google Scholar 

  • Tracy, P. E., & Morgan, V. (2000). Big Brother and his science kit: DNA databases for 21ste centry crime control. Journal of Criminal Law and Criminology, 90(2), 635–690.

    Article  Google Scholar 

  • van der Beek, K. (2011). Forensic DNA profiles crossing borders in Europe (Implementation of the Treaty of Prüm). Retrieved 2014-10-08, from www.promega.com/resources/profiles-in-dna/2011/forensic-dna-profiles-crossing-borders-in-europe/?activeTab=0.

  • van Kesteren, J., Mayhew, P., & Nieuwbeerta, P. (2000). Criminal vicitimisation in seventeen industrialised countries. In Wetenschappelijk Onderzoek- en Documentatiecentrum (Ed.), Onderzoek en beleid (pp. 107).

  • van Kesteren, J., van Dijk, J., & Mayhew, P. (2014). The international crime victims surveys: a retrospective. International Review of Victimology, 20(1), 49–69.

    Article  Google Scholar 

  • van Mastrigt, S. B. (2014). Co-offending and offender attributes. Encyclopedia of Criminology and Criminal Justice, 559-570.

  • van Mastrigt, S. B., & Carrington, P. J. (2014). Sex and age homophily in co-offending networks: opportunity or preference? In C. Morselli (Ed.), Crime and networks (pp. 28–51). New York: Routledge.

    Google Scholar 

  • Vandeviver, C., Van Daele, S., & Vander Beken, T. (2015). What makes long crime trips worth undertaking? balancing costs and benefits in burglars’ journey to crime. British Journal of Criminology, 55, 399–420. doi:10.1093/bjc/azu078.

    Article  Google Scholar 

  • Vandiver, D. M. (2010). Assessing gender differences and co-offending patterns of a predominantly “male-oriented” crime: a comparison of a cross-national sample of juvenile boys and girls arrested for a sexual offense. Violence and Victims, 25(2), 243–264.

    Article  Google Scholar 

  • Versteegh, P., Janssen, J., & Bernasco, W. (2003). Beginners, doorstromers en veelplegers. Carrièrecriminaliteit in de politieregio Haaglanden. Tijdschrift voor Criminologie, 45(2), 127–139.

    Google Scholar 

  • Voultsos, P., Njau, S., Tairis, N., Psaroulis, D., & Kovatsi, L. (2011). Launching the Greek forensic DNA database. the legal framework and arising ethical issues. Forensic Science International: Genetics, 5, 407–410.

    Article  Google Scholar 

  • Walker, C., & Cram, I. G. (1990). DNA profiling and police powers. Criminal Law Review, 479-493.

  • Wallace, H. M. (2006). The UK National DNA database. balancing crime detection, human rights and privacy. EMBO reports, 7.

  • Wallace, H. M., Jackson, A. R., & Thibedeau, A. D. (2014). Forensic DNA databases: ethical and legal standards: a global review. Egyptian Journal of Forensic Sciences, 4(3), 57–63.

    Article  Google Scholar 

  • Warr, M. (1996). Organization and instigation in delinquent groups. Criminology, 34(1), 11–38.

    Article  Google Scholar 

  • Weedn, V. W., & Hicks, J. W. (1997). The unrealized potential of DNA testing. National Institute of Justice Journa l(234), 16-23.

  • Weerman, F. M. (2001). Samenplegen. Over criminele samenwerking en groepsvorming. Nijmegen: Ars Aequi Libri.

    Google Scholar 

  • Weerman, F. M. (2003). Co-offending as social exchange. British Journal of Criminology, 43, 398–416.

    Article  Google Scholar 

  • Weerman, F. M., & Kleemans, E. (2002). Criminele groepen en samenwerkingsverbanden. Tijdschrift voor Criminologie, 44(2), 114–127.

    Google Scholar 

  • Westerberg, K., Grant, T., & Bond, J. W. (2007). Triangulation mobility of auto-theft offenders. Journal of Investigative Psychology and Offender Profiling, 4, 109–120.

    Article  Google Scholar 

  • Whittall, H. (2008). The forensic use of DNA: scientific success story, ethical minefield. Biotechnology Journal, 3(3), 303–305.

    Article  Google Scholar 

  • Wiles, P., & Costello, A. (2000). The ‘road to nowhere’: The evidence for travelling criminals. In Home Office (Ed.). London.

  • Williams, R., & Johnson, P. (2004). Wonderment and dread: representations of DNA in ethical disputes about forensic DNA databases. New Genetics and Society, 23(2), 205–223.

    Article  Google Scholar 

  • Williams, R., & Johnson, P. (2005). Inclusiveness, effectiveness and intrusiveness: issues in the developing uses of DNA profiling in support of criminal investigations. Journal of Law, Medecine & Ethics, 545-558.

  • Wilson, D. B., Weisburd, D., & McClure, D. (2011). Use of DNA testing in police investigative work for increasing offender identification, arrest, conviction and case clearance. Campbell Systematic Reviews, 7, 53.

    Google Scholar 

  • Wittebrood, K. (2005). Van delictmeting tot officiële aangifte. Sprake van sociale ongelijkheid? In G. J. N. Bruinsma, W. Huisman, & R. van Swaaningen (Eds.), Basisteksten in de criminologie I: aard, omvang en verklaringen (pp. 90–103). Den Haag: Boom Juridische Uitgevers.

    Google Scholar 

Download references

Acknowledgments

The writing and research for this paper were supported by the Be-Gen project. The Be-Gen project “Understanding the Operational, Strategic and Political Implications of the National Genetic Database” received financial support of the BRAIN-be Programme “Belgian Research Action through Interdisciplinary Networks” (Belgian Science Policy Office), contract number BR/132/A4/Be-Gen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine De Moor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Moor, S., Vander Beken, T. & Van Daele, S. DNA Databases as Alternative Data Sources for Criminological Research. Eur J Crim Policy Res 23, 175–192 (2017). https://doi.org/10.1007/s10610-016-9327-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10610-016-9327-9

Keywords

Navigation