Skip to main content
Log in

Computational Approach for the Firm’s Cost Minimization Problem Using the Selective Infimal Convolution Operator

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

The Infimal Convolution operator is well known in the context of convex analysis. This operator admits a very precise micro-economic interpretation: if several production units produce the same output, the Infimal Convolution of their cost functions represents the joint cost function distributing the production among all of them in the most efficient possible way. The drawback of this operator is that it does not discriminate whether one of some of the production units is not profitable (in the sense that it would be preferable to do without it).This is the motivating idea for the present work, in which we introduce a new operator: the Selective Infimal Convolution. We give not just its definition and basic properties but also an algorithm for its exact computation. Using this, we avoid the combinatorial blowing-up of other classical methods used for solving similar problems. Even more, our approach solves a one-parameter family of problems, not just a single one. We provide an application to the Firm’s Cost Minimization Problem, one of the most important problems in Microeconomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bauschke, H. H., & Combettes, P. L. (2011). Convex analysis and monotone operator theory in Hilbert spaces (pp. 167–180). Berlin: Springer.

    Book  Google Scholar 

  • Bayón, L., García-Nieto, P. J., García-Rubio, R., Grau, J. M., Ruiz, M. M., & Suárez, P. M. (2016). The operation of infimal/supremal convolution in mathematical economics. International Journal of Computer Mathematics, 93(5), 735–748.

    Article  Google Scholar 

  • Bayón, L., García-Nieto, P. J., Grau, J. M., Ruiz, M. M., & Suárez, P. M. (2014). An economic dispatch algorithm of combined cycle units. International Journal of Computer Mathematics, 91(2), 269–277.

    Article  Google Scholar 

  • Bayón, L., Grau, J. M., Ruiz, M. M., & Suárez, P. M. (2010). An analytic solution for some separable convex quadratic programming problems with equality and inequality constraints. Journal of Mathematical Inequalities, 4(3), 453–465.

    Article  Google Scholar 

  • Bayón, L., Grau, J. M., Ruiz, M. M., & Suárez, P. M. (2011). Algorithm for calculating the analytic solution for economic dispatch with multiple fuel units. Computers and Mathematics with Applications, 62(5), 2225–2234.

    Article  Google Scholar 

  • Dai, H., Zhang, N., & Su, W. (2015). A literature review of stochastic programming and unit commitment. Journal of Power and Energy Engineering, 3(4), 206–214.

    Article  Google Scholar 

  • Jehle, G. A., & Reny, P. J. (2001). Advanced Microeconomic Theory (2nd ed.). Boston: Addison-Wesley.

    Google Scholar 

  • Luenberger, D. G. (1995). Microeconomic Theory. New York: McGraw-Hill.

    Google Scholar 

  • Moreau, J. J. (1970). Inf-convolution, sous-additivit e, convexit eriques. Journal de Mathématiques Pures et Appliquées, 49, 109–154.

    Google Scholar 

  • Padhy, N. P. (2004). Unit commitment—A bibliographical survey. IEEE Transactions on Power Systems, 19(2), 1196–1205.

    Article  Google Scholar 

  • Rockafellar, R. T. (1970). Convex Analysis. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Samani, H., Razmezani, M., & Naseh, M. R. (2013). Unit commitment and methods for solving; a review. Journal of Basic and Applied Scientific Research, 3(2s), 358–364.

    Google Scholar 

  • Santos, M. S., & Vigo-Aguiar, J. (1998). Analysis of a numerical dynamic programming algorithm applied to economic models. Econometrica, 66(2), 409–426.

    Article  Google Scholar 

  • Singh, A., & Kumar, S. (2016). Solution to unit commitment scheduling problem—A proposed approach. International Journal of Control Theory and Applications, 9(41), 499–507.

    Google Scholar 

  • Strömberg, T. (1996). The operation of infimal convolution, Dissertationes Mathematicae, 352

  • Tung, N. S., Kaur, G., Kaur, G., & Bhardwaj, A. (2012). Optimization techniques in unit commitment a review. International Journal of Engineering Science and Technology, 4(4), 1623–1627.

    Google Scholar 

  • Varian, H. R. (2005). Intermediate microeconomics: A modern approach (7th ed.). New York: W.W. Norton & Company.

    Google Scholar 

  • Vigo-Aguiar, J., Medina, J., & Garcia-Rubio, R. (2017). Current computational tools for science engineering and economics at CMMSE. Journal of Computational and Applied Mathematics, 318, 1–2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bayón.

Appendix: Proof of the Formula for the SIC (Quadratic Case)

Appendix: Proof of the Formula for the SIC (Quadratic Case)

Proposition 5Let\(F_{i}(x_{i})=\alpha _{i}+\beta _{i}x_{i}+\gamma _{i}x_{i}^{2}\)with domains\([m_{i},M_{i}]\)and\( \gamma _{i}>0\)\(\,(i=1,2)\). Let us assume that\(F_{1}^{\prime }(m_{1})\le F_{2}^{\prime }(m_{2})\). Define

$$\begin{aligned} l_{1}=\dfrac{(-\beta _{1}+\beta _{2}+2\gamma _{2}m_{2})}{2\gamma _{1}} ;\;l_{2}=\dfrac{(\beta _{1}-\beta _{2}+2\gamma _{1}M_{1})}{2\gamma _{2}} ;\;l_{3}=\dfrac{(-\beta _{1}+\beta _{2}+2\gamma _{2}M_{2})}{2\gamma _{1}} \end{aligned}$$
(40)

and

$$\begin{aligned} F_{12}(\xi )=\alpha _{1}+\alpha _{2}-\frac{(\beta _{1}-\beta _{2})^{2}}{ 4(\gamma _{1}+\gamma _{2})}+\frac{\gamma _{2}\beta _{1}+\gamma _{1}\beta _{2} }{\gamma _{1}+\gamma _{2}}\xi +\frac{\gamma _{1}\gamma _{2}}{\gamma _{1}+\gamma _{2}}\xi ^{2}. \end{aligned}$$
(41)

Then

(A) If \(F_{1}^{\prime }(m_{1})\le F_{2}^{\prime }(m_{2})\le F_{1}^{\prime }(M_{1})\le F_{2}^{\prime }(M_{2})\), then:

$$\begin{aligned} (F_{1}\bigodot F_{2}) (\xi ):=\left\{ \begin{array}{lll} F_{1}(\xi -m_{2})+F_{2}(m_{2}) &{} \quad \text { if} &{} \xi \in [m_{1}+m_{2},m_{2}+l_{1}] \\ F_{12}(\xi ) &{} \quad \text { if} &{} \xi \in [m_{2}+l_{1},M_{1}+l_{2}] \\ F_{2}(\xi -M_{1})+F_{1}(M_{1}) &{} \quad \text { if} &{} \xi \in [M_{1}+l_{2},M_{1}+M_{2}] \end{array} \right. \end{aligned}$$
(42)

(B) If \(F_{1}^{\prime }(m_{1})\le F_{2}^{\prime }(m_{2})\le F_{2}^{\prime }(M_{2})\le F_{1}^{\prime }(M_{1})\), then:

$$\begin{aligned} (F_{1}\bigodot F_{2}) (\xi ):=\left\{ \begin{array}{lll} F_{1}(\xi -m_{2})+F_{2}(m_{2}) &{} \quad \text { if} &{} \xi \in [m_{1}+m_{2},m_{2}+l_{1}] \\ F_{12}(\xi ) &{} \quad \text { if} &{} \xi \in [m_{2}+l_{1},M_{2}+l_{3}] \\ F_{1}(\xi -M_{2})+F_{2}(M_{2}) &{}\quad \text { if} &{} \xi \in [M_{2}+l_{3},M_{1}+M_{2}] \end{array} \right. \end{aligned}$$
(43)

(C) If \(F_{1}^{\prime }(m_{1})\le F_{1}^{\prime }(M_{1})\le F_{2}^{\prime }(m_{2})\le F_{2}^{\prime }(M_{2})\), then:

$$\begin{aligned} (F_{1}\bigodot F_{2}) (\xi ):=\left\{ \begin{array}{lll} F_{1}(\xi -m_{2})+F_{2}(m_{2}) &{} \quad \text { if} &{} \xi \in [m_{1}+m_{2},M_{1}+m_{2}] \\ F_{1}(M_{1})+F_{2}(\xi -M_{1}) &{} \quad \text { if} &{} \xi \in [M_{1}+m_{2},M_{1}+M_{2}] \end{array} \right. \end{aligned}$$
(44)

Proof

The case for n quadratic functions has been studied in Bayón et al. (2010). In this paper we only deal with the case \(n=2\).

  1. (A)

    Let \((x_{\xi },y_{\xi })\) be the minimum of \( F_{1}(x)+F_{2}(y)\) subject to \(x+y=\xi \), with \(m_{1}\le x_{\xi }\le M_{1}\) and \(m_{2}\le y_{\xi }\le M_{2}\).

We first show that the following holds:

  1. (i)

    If \(F_{1}^{\prime }(m_{1})<F_{2}^{\prime }(m_{2})\) or \( (F_{1}^{\prime }(m_{1})=F_{2}^{\prime }(m_{2}))\) then \(y_{\xi }>m_{2}\Rightarrow x_{\xi }>m_{1}\ \) (or \(x_{\xi }=m_{1}\Rightarrow y_{\xi }=m_{2}\)).

  2. (ii)

    If \(F_{2}^{\prime }(m_{2})<F_{1}^{\prime }(M_{1})\) or \( (F_{2}^{\prime }(m_{2})=F_{1}^{\prime }(M_{1}))\) then \(x_{\xi }=M_{1}\Rightarrow y_{\xi }>m_{2}\) (or \(y_{\xi }=m_{2}\Rightarrow x_{\xi }<M_{1}\)).

  3. (iii)

    If \(F_{1}^{\prime }(M_{1})<F_{2}^{\prime }(M_{2})\) or \( (F_{1}^{\prime }(M_{1})=F_{2}^{\prime }(M_{2}))\) then \(x_{\xi }<M_{1}\Rightarrow y_{\xi }<M_{2}\) (or \(y_{\xi }=M_{2}\Rightarrow x_{\xi }=M_{1}\)).

We prove just the case (i), the other two follow from a similar reasoning.

(i) Let\(F_{1}^{\prime }(m_{1})\le F_{2}^{\prime }(m_{2})\). Assuming that \( x_{\xi }=m_{1}\) and \(y_{\xi }>m_{2}\) leads to a contradiction. Consider the function:

$$\begin{aligned} \varPhi (\varepsilon )=F_{1}(x_{\xi }+\varepsilon )+F_{2}(y_{\xi }-\varepsilon ) \end{aligned}$$
(45)

Hence \(\varPhi ^{\prime }(0)=F_{1}^{\prime }(m_{1})-F_{2}^{\prime }(y_{\xi })<F_{1}^{\prime }(m_{1})-F_{2}^{\prime }(m_{2})\le 0\), which contradicts the minimal nature of \((x_{\xi },y_{\xi }).\)

Notice that (i) guarantees that the minimum cannot be obtained for \(x_{\xi }=m_{1}\) and \(m_{2}<y_{\xi }\le M_{2}\); (ii) guarantees that the minimum cannot be obtained for \(y_{\xi }=m_{2}\) and \(x_{\xi }=M_{1}\), and finally (iii) guarantees that the minimum cannot be obtained for \(y_{\xi }=M_{2}\) and \(m_{1}\le x_{\xi }<M_{1}.\)

Thus, we have the following possibilities:

  • If \(y_{\xi }=m_{2}\) and \(m_{1}\le x_{\xi }<M_{1}\) then \(F_{1}^{\prime }(x_{\xi })\le F_{2}^{\prime }(m_{2})\). As \(F_{1}^{\prime }\) is increasing, there must exist some \(l_{1}\ge x_{\xi }\) with \(F_{1}^{\prime }(l_{1})=F_{2}^{\prime }(m_{2}),\) that is,

    $$\begin{aligned} l_{1}=\dfrac{(-\beta _{1}+\beta _{2}+2\gamma _{2}m_{2})}{2\gamma _{1}} \end{aligned}$$
    (46)

    such that \(y_{\xi }=m_{2}\) and \(x_{\xi }=\xi -m_{2}\in \left[ m_{1},l_{1} \right] \), from which \(\xi \in [m_{1}+m_{2},l_{1}+m_{2}]\) and certainly, in this interval, \((F_{1}\bigodot F_{2})\,(\xi )=F_{1}(\xi -m_{2})+F_{2}(m_{2})\).

  • If \(x_{\xi }=M_{1}\) and \(m_{2}<y_{\xi }\le M_{2}\) then \( F_{1}^{\prime }(M_{1})\le F_{2}^{\prime }(y_{\xi })\). As \( F_{2}^{\prime }\) is increasing, there must exist some \(l_{2}\le y_{\xi }\) with \(F_{1}^{\prime }(M_{1})=F_{2}^{\prime }(l_{2}),\) that is,

    $$\begin{aligned} l_{2}=\dfrac{(\beta _{1}-\beta _{2}+2\gamma _{1}M_{1})}{2\gamma _{2}} \end{aligned}$$
    (47)

    such that \(x_{\xi }=M_{1}\) and \(y_{\xi }=\xi -M_{1}\in \left[ l_{2},M_{2} \right] \), from which \(\xi \in [M_{1}+l_{2},M_{1}+M_{2}]\) and certainly, in this interval, \((F_{1}\bigodot F_{2})\,(\xi )=F_{1}(M_{1})+F_{2}(\xi -M_{1})\).

  • If \(m_{1}<x_{\xi }<M_{1}\) and \(m_{2}<y_{\xi }<M_{2}\) then \( F_{1}^{\prime }(x_{\xi })=F_{2}^{\prime }(y_{\xi })\). It is clear that, in this case, \(\xi \in [l_{1}+m_{2},M_{1}+l_{2}]\) and

    $$\begin{aligned} \underset{y}{\min }\{F_{1}(\xi -y)+F_{2}(y)\}=\alpha _{1}+\alpha _{2}-\frac{ (\beta _{1}-\beta _{2})^{2}}{4(\gamma _{1}+\gamma _{2})}+\frac{\gamma _{2}\beta _{1}+\gamma _{1}\beta _{2}}{\gamma _{1}+\gamma _{2}}\xi +\frac{ \gamma _{1}\gamma _{2}}{\gamma _{1}+\gamma _{2}}\xi ^{2}\nonumber \\ \end{aligned}$$
    (48)

which function we denote \(F_{12}(\xi )\).

(B) and (C) are proved using a similar reasoning. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayón, L., Fortuny Ayuso, P., García-Rubio, R. et al. Computational Approach for the Firm’s Cost Minimization Problem Using the Selective Infimal Convolution Operator. Comput Econ 54, 535–549 (2019). https://doi.org/10.1007/s10614-018-9841-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-018-9841-6

Keywords

Mathematics Subject Classification

Navigation