Skip to main content
Log in

Impact of tannic acid on blood pressure, oxidative stress and urinary parameters in L-NNA-induced hypertensive rats

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Hypertension is a major health problem with increasing prevalence around the world. Tannic acid is water-soluble polyphenol that is present in tea, green tea, coffee, red wine, nuts, fruits and many plant foods. It has been reported to serve as an antioxidant or a pro-oxidant depending on the type of cells and its concentration. The purpose of our study was to evaluate the effect of tannic acid on systolic blood pressure, oxidative stress and some urinary parameters in the rat model of essential hypertension. Blood pressures of all rats were measured using the tail-cuff method. The nitric oxide synthase inhibitor N (omega)-nitro-L-arginine was administered orally at a dose of 0.5 g/l/day for 15 days to rats in order to create an animal model of hypertension. Tannic acid was intraperitoneally injected at a dose of 50 mg/kg for 15 days. Superoxide dismutase, catalase activity and the concentration of malondialdehyde (MDA) were determined in blood plasma and homogenates of heart, liver and kidney. In order to evaluate renal functions, urine pH, urine volume, urine creatine, uric acid, and urea nitrogen values were measured. Compared with the hypertension group, a decrease in MDA concentrations of heart tissue (p < 0.01), urea nitrogen values (p < 0.01) and urine volumes (p < 0.001) were established in hypertension + tannic acid group. There was also a decrease in blood pressure values (20th and 30th days) of this group, but there was no a statistical difference according to hypertension group. The findings of our research show the effect of tannic acid in lowering blood pressure in hypertensive rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baylis C, Mitruka B, Deng A (1992) Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90:278–281. doi:10.1172/JCI115849

    Article  CAS  Google Scholar 

  • Cosan D, Soyocak A, Basaran A, Degirmenci I, Gunes HV (2009) The effects of resveratrol and tannic acid on apoptosis in colon adenocarcinoma cell line. Saudi Med J 30:191–195

    Google Scholar 

  • Cosan DT, Bayram B, Soyocak A, Basaran A, Gunes HV, Degirmenci I, Musmul A (2010) Role of phenolic compounds in nitric oxide synthase activity in colon and breast adenocarcinoma. Cancer Biother Radiopharm 25:577–580. doi:10.1089/cbr.2010.0799

    Article  CAS  Google Scholar 

  • Cosan DT, Soyocak A, Basaran A, Degirmenci I, Gunes HV, Sahin FM (2011) Effects of various agents on DNA fragmentation and telomerase enzyme activities in adenocarcinoma cell lines. Mol Biol Rep 38:2463–2469. doi:10.1007/s11033-010-0382-x

    Article  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    CAS  Google Scholar 

  • Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151

    Article  CAS  Google Scholar 

  • Gulcin I, Huyut Z, Elmastas M, Aboul-Enein HY (2010) Radical scavenging and antioxidant activity of tannic acid. Arab J Chem 3:43–53. doi:10.1016/j.arabjc.2009.12.008

    Article  CAS  Google Scholar 

  • Kashyap MK, Yadav V, Sherawat BS, Jain S, Kumari S, Khullar M, Sharma PC, Nath R (2005) Different antioxidants status, total antioxidant power and free radicals in essential hypertension. Mol Cell Biochem 277:89–99. doi:10.1007/s11010-005-5424-7

    Article  CAS  Google Scholar 

  • Kawakami K, Aketa S, Sakai H, Watanabe Y, Nishida H, Hirayama M (2011) Antihypertensive and vasorelaxant effects of water-soluble proanthocyanidins from persimmon leaf tea in spontaneously hypertensive rats. Biosci Biotechnol Biochem 75:1435–1439

    Article  CAS  Google Scholar 

  • Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223. doi:10.1016/S0140-6736(05)17741-1

    Article  Google Scholar 

  • Khan NS, Ahmad A, Hadi SM (2000) Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chem Biol Interact 125:177–189

    Article  CAS  Google Scholar 

  • Kiris I, Kapan S, Kilbas A, Yilmaz N, Altuntas I, Karahan N, Okutan H (2008) The protective effect of erythropoietin on renal injury induced by abdominal aortic-ischemia-reperfusion in rats. J Surg Res 149:206–213. doi:10.1016/j.jss.2007.12.752

    Article  CAS  Google Scholar 

  • Kour H, Perkins MJ (1991) The free radical chemistry of food additives. In: Arvoma OI, Halliwell B (eds) Free radicals and food additives. Taylor and Francis Ltd., London, pp 17–35

    Google Scholar 

  • Krajka-Kuzniak V, Kaczmarek J, Baer-Dubowska W (2008) Effect of naturally occurring phenolic acids on the expression of glutathione S-transferase isozymes in the rat. Food Chem Toxicol 46:1097–1102. doi:10.1016/j.fct.2007.11.004

    Article  CAS  Google Scholar 

  • Labieniec M, Gabryelak T (2003) Effects of tannins on Chinese hamster cell line B14. Mutat Res 539:127–135. doi:10.1016/S1383-5718(03)00161-X

    Article  CAS  Google Scholar 

  • Labieniec M, Gabryelak T (2006) Oxidatively modified proteins and DNA in digestive gland cells of the fresh-water mussel Unio tumidus in the presence of tannic acid and its derivatives. Mutat Res 603:48–55. doi:10.1016/j.mrgentox.2005.10.013

    Article  CAS  Google Scholar 

  • Marienfeld C, Tadlock L, Yamagiwa Y, Patel T (2003) Inhibition of cholangiocarcinoma growth by tannic acid. Hepatology 37:1097–1104. doi:10.1053/jhep.2003.50192

    Article  CAS  Google Scholar 

  • Mihara M, Uchiyama M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  Google Scholar 

  • Oktar S, Ilhan S, Aksulu HE (2008) Clonidine prevents development of hypertension in N (omega)-nitro-L-arginine-treated rats. Anadolu Kardiyol Derg 8:104–110

    Google Scholar 

  • Ozbayer C, Degirmenci I, Kurt H, Ozden H, Civi K, Basaran A, Gunes HV (2011) Antioxidant and free radical-scavenging properties of Stevia rebaudiana (Bertoni) extracts and L-NNA in streptozotocine–nicotinamide induced diabetic rat liver. Turk Klin Tip Bilim 31:51–60. doi:10.5336/medsci.2009-16216

    Google Scholar 

  • Porteri E, Rizzoni D, De Ciuceis C, Boari GE, Platto C, Pilu A, Miclini M, Agabiti Rosei C, Bulgari G, Agabiti Rosei E (2010) Vasodilator effects of red wines in subcutaneous small resistance artery of patients with essential hypertension. Am J Hypertens 23:373–378. doi:10.1038/ajh.2009.280

    Article  CAS  Google Scholar 

  • Ribeiro MO, Antunes E, de Nucci G, Lovisolo SM, Zatz R (1992) Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension 20:298–303

    Article  CAS  Google Scholar 

  • Robinson HJ, Graessle OE (1943) Toxicity of tannic acid. J Pharmacol Exp Ther 77:63–69

    CAS  Google Scholar 

  • Rodrigo R, Gil D, Miranda-Merchak A, Kalantzidis G (2012) Antihypertensive role of polyphenols. Adv Clin Chem 58:225–254

    Article  CAS  Google Scholar 

  • Ruiz-Gutierrez V, Vazquez CM, Santa-Maria C (2001) Liver lipid composition and antioxidant enzyme activities of spontaneously hypertensive rats after ingestion of dietary fats (fish, olive and high-oleic sunflower oils). Biosci Rep 21:271–285

    Article  CAS  Google Scholar 

  • Russo C, Olivieri O, Girelli D, Faccini G, Zenari ML, Lombardi S, Corrocher R (1998) Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens 16:1267–1271

    Article  CAS  Google Scholar 

  • Saravanakumar M, Raja B (2011) Veratric acid, a phenolic acid attenuates blood pressure and oxidative stress in L-NAME induced hypertensive rats. Eur J Pharmacol 671:87–94. doi:10.1016/j.ejphar.2011.08.052

    Article  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide-dismutase. Clin Chem 34:497–500

    CAS  Google Scholar 

  • Taffetani S, Ueno Y, Meng F, Venter J, Francis H, Glaser S, Alpini G, Patel T (2005) Tannic acid inhibits cholangiocyte proliferation after bile duct ligation via a cyclic adenosine 5′,3′-monophosphate-dependent pathway. Am J Pathol 166:1671–1679. doi:10.1016/S0002-9440(10)62477-7

    Article  CAS  Google Scholar 

  • Tanyer G (1985) Hematoloji ve laboratuvar. Ayyıldız matbaası A.Ş, Ankara

    Google Scholar 

  • Touyz RM, Briones AM (2011) Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens Res 34:5–14. doi:10.1038/hr.2010.201

    Article  CAS  Google Scholar 

  • World Health Organization (2003) The world health report 2002. Midwifery 19:72–73

    Article  Google Scholar 

  • Zatz R, Baylis C (1998) Chronic nitric oxide inhibition model six years on. Hypertension 32:958–964

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didem Turgut Coşan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turgut Coşan, D., Saydam, F., Özbayer, C. et al. Impact of tannic acid on blood pressure, oxidative stress and urinary parameters in L-NNA-induced hypertensive rats. Cytotechnology 67, 97–105 (2015). https://doi.org/10.1007/s10616-013-9661-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9661-4

Keywords

Navigation