Skip to main content
Log in

Two Linear Transformations each Tridiagonal with Respect to an Eigenbasis of the other; Comments on the Parameter Array

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \({\mathbb K} \) denote a field. Let it d denote a nonnegative integer and consider a sequence p=( \(\theta_i, \theta^*_i,i=0...d; \varphi_j, \phi_j,j=1...{\it d})\) consisting of scalars taken from \({\mathbb K} \). We call p a parameter array whenever: (PA1) \(\theta_i \not=\theta_j, \; \theta^*_i\not=\theta^*_j\) if \(i\not=j$, $(0 \leq i, j\leq d)$; (PA2) $ \varphi_i\not=0$, $\phi_i\not=0$ $(1 \leq i \leq d)$; (PA3) $\varphi_i = \phi_1 \sum_{h=0}^{i-1} ({\theta_h-\theta_{d-h}})/({\theta_0-\theta_d}) + (\theta^*_i-\theta^*_0)(\theta_{i-1}-\theta_d)$ $(1 \leq i \leq d)$; (PA4) $\phi_i = \varphi_1 \sum_{h=0}^{i-1} ({\theta_h-\theta_{d-h}})/({\theta_0-\theta_d}) + (\theta^*_i-\theta^*_0)(\theta_{d-i+1}-\theta_0)$ $(1 \leq i \leq d)$; (PA5) $(\theta_{i-2}-\theta_{i+1})(\theta_{i-1}-\theta_i)^{-1}$, $(\theta^*_{i-2}-\theta^*_{i+1})(\theta^*_{i-1}-\theta^*_i)^{-1}\) are equal and independent of i for \(2 \leq i \leq d-1\). In Terwilliger, J. Terwilliger, Linear Algebra Appl., Vol. 330(2001) p. 155 we showed the parameter arrays are in bijection with the isomorphism classes of Leonard systems. Using this bijection we obtain the following two characterizations of parameter arrays. Assume p satisfies PA1 and PA2. Let A, B,A^*, B^* denote the matrices in \({Mat}_{{\it d}+1}\) ( \({\mathbb K} \)) which have entries A ii i , B ii d-i , A * ii * i , B * ii * i (0 ≤ id), A i,i-1=1, B i,i-1=1, A * i-1,i i , B * i-1,i i (1 ≤ id), and all other entries 0. We show the following are equivalent: (i) p satisfies PA3–PA5; (ii) there exists an invertible GMat d+1( \({\mathbb K} \)) such that G −1 AG=B and G −1 A * G=B *; (iii) for 0 ≤ id the polynomial

$$ \sum_{n=0}^i \frac{ (\lambda-\theta_0) (\lambda-\theta_1) \cdots (\lambda-\theta_{n-1}) (\theta^*_i-\theta^*_0) (\theta^*_i-\theta^*_1) \cdots (\theta^*_i-\theta^*_{n-1}) } {\varphi_1\varphi_2\cdots \varphi_n}$$

is a scalar multiple of the polynomial

$$\sum_{n=0}^i \frac{ (\lambda-\theta_d) (\lambda-\theta_{d-1}) \cdots (\lambda-\theta_{d-n+1}) (\theta^*_i-\theta^*_0) (\theta^*_i-\theta^*_1) \cdots (\theta^*_i-\theta^*_{n-1}) } {\phi_1\phi_2\cdots \phi_n}.$$

We display all the parameter arrays in parametric form. For each array we compute the above polynomials. The resulting polynomials form a class consisting of the q-Racah, q-Hahn, dual q-Hahn, q-Krawtchouk, dual q-Krawtchouk, quantum q-Krawtchouk, affine q-Krawtchouk, Racah, Hahn, dual-Hahn, Krawtchouk, Bannai/Ito, and Orphan polynomials. The Bannai/Ito polynomials can be obtained from the q-Racah polynomials by letting q tend to −1. The Orphan polynomials have maximal degree 3 and exist for ( \({\mathbb K} \))=2 only. For each of the polynomials listed above we give the orthogonality, 3-term recurrence, and difference equation in terms of the parameter array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R Askey JA Wilson (1979) ArticleTitleA set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols SIAM J. Math. Anal. 10 1008–1016 Occurrence Handle0437.33014 Occurrence Handle541097

    MATH  MathSciNet  Google Scholar 

  • E Bannai T Ito (1984) Algebraic Combinatorics I: Association Schemes Benjamin/Cummings London Occurrence Handle0555.05019

    MATH  Google Scholar 

  • G Gasper M Rahman (1990) Basic Hypergeometric Series}, Encyclopedia of Mathematics and its Applications Cambridge University Press Cambridge

    Google Scholar 

  • Ya Granovskii I Lutzenko A Zhedanov (1992) ArticleTitleMutual integrability, quadratic algebras, and dynamical symmetry Ann. Physics 217 IssueID1 1–20 Occurrence Handle1173277

    MathSciNet  Google Scholar 

  • FA Grunbaum L Haine (1996) ArticleTitleA q-version of a theorem of Bochner J. Comput. Appl. Math. 68 IssueID1-2 103–114 Occurrence Handle1418753

    MathSciNet  Google Scholar 

  • T. Ito, K. Tanabe and P. Terwilliger, Some algebra related to P- and Q-polynomial association schemes, In Codes and Association Schemes (Piscataway NJ, 1999), Amer. Math. Soc., Providence RI (2000).

  • R. Koekoek and R. Swarttouw, The Askey-scheme of hypergeometric orthogonal polyomials and its q-analog, Vol. 98–17 of Reports of the faculty of Technical Mathematics and Informatics, Delft, The Netherlands (1998).

  • HT Koelink (1996) ArticleTitleAskey-Wilson polynomials and the quantum su(2) group: survey and applications Acta Appl. Math 44 IssueID3 295–352 Occurrence Handle0865.33013 Occurrence Handle1407326

    MATH  MathSciNet  Google Scholar 

  • D Leonard (1982) ArticleTitleOrthogonal polynomials, duality, and association schemes SIAM J. Math. Anal. 13 IssueID4 656–663 Occurrence Handle0495.33006 Occurrence Handle661597

    MATH  MathSciNet  Google Scholar 

  • H Rosengren (1999) Multivariable Orthogonal Polynomials as Coupling Coefficients for Lie and Quantum Algebra Representations, Centre for Mathematical Sciences Lund University Sweden

    Google Scholar 

  • JJ Rotman (2002) Advanced Modern Algebra Prentice-Hall Saddle River NJ Occurrence Handle0997.00001

    MATH  Google Scholar 

  • P Terwilliger (1992) ArticleTitleThe subconstituent algebra of an association scheme J. Algebraic Combin. 1 IssueID4 363–388 Occurrence Handle0785.05089 Occurrence Handle1203683

    MATH  MathSciNet  Google Scholar 

  • P Terwilliger (2001) ArticleTitleTwo linear transformations each tridiagonal with respect to an eigenbasis of the other Linear Algebra Appl. 330 149–203 Occurrence Handle0980.05054 Occurrence Handle1826654

    MATH  MathSciNet  Google Scholar 

  • P. Terwilliger, Two relations that generalize the q-Serre relations and the Dolan-Grady relations, In Proc. of Nagoya 1999 Workshop on Physics and Combinatorics (Nagoya, Japan 1999), World Scientific Publishing Co., Inc., River Edge, NJ, Providence RI (2000).

  • P Terwilliger (2002) ArticleTitleLeonard pairs from 24 points of view Rocky Mountain J. Math 32 IssueID2 1–62 Occurrence Handle10.1216/rmjm/1030539699 Occurrence Handle1934918

    Article  MathSciNet  Google Scholar 

  • P. Terwilliger, Introduction to Leonard pairs. OPSFA Rome 2001, J. Comput. Appl. Math. Vol. 153, No. 2 (2003) pp 463--475.

  • P. Terwilliger 1999 Introduction to Leonard pairs and Leonard systems. Sūrikaisekikenkyūsho Kōlkyūroku 1109) pp. 67--79 (1999). Algebraic combinatorics (Kyoto, 1999)

  • P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other: the TD-D and the LB-UB canonical form. Preprint.

  • P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the split decomposition. Preprint.

  • AS Zhedanov (1991) ArticleTitleHidden symmetry of Askey-Wilson polynomials Teoret. Mat. Fiz. 89 IssueID2 190–204 Occurrence Handle0744.33009 Occurrence Handle1151381

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Terwilliger.

Additional information

AMS classification: 05E30, 17B37, 33C45, 33D45

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terwilliger, P. Two Linear Transformations each Tridiagonal with Respect to an Eigenbasis of the other; Comments on the Parameter Array. Des Codes Crypt 34, 307–332 (2005). https://doi.org/10.1007/s10623-004-4862-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-004-4862-7

Keywords

Navigation