Skip to main content
Log in

Synchronization of a class of cyclic discrete-event systems describing legged locomotion

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

It has been shown that max-plus linear systems are well suited for applications in synchronization and scheduling, such as the generation of train timetables, manufacturing, or traffic. In this paper we show that the same is true for multi-legged locomotion. In this framework, the max-plus eigenvalue of the system matrix represents the total cycle time, whereas the max-plus eigenvector dictates the steady-state behavior. Uniqueness of the eigenstructure also indicates uniqueness of the resulting behavior. For the particular case of legged locomotion, the movement of each leg is abstracted to two-state circuits: swing and stance (leg in flight and on the ground, respectively). The generation of a gait (a manner of walking) for a multi-legged robot is then achieved by synchronizing the multiple discrete-event cycles via the max-plus framework. By construction, different gaits and gait parameters can be safely interleaved by using different system matrices. In this paper we address both the transient and steady-state behavior for a class of gaits by presenting closed-form expressions for the max-plus eigenvalue and max-plus eigenvector of the system matrix and the coupling time. The significance of this result is in showing guaranteed stable gaits and gait switching, and also a systematic methodology for synthesizing controllers that allow for legged robots to change rhythms fast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We restrict ourselves to a class of timed Petri nets called timed event graphs such that a one-to-one translation to max-plus linear systems is possible (see Heidergott et al. (2006), chapter 7). In timed event graphs each place can have one single incoming arc and one single outgoing arc.

  2. Disturbances are defined as time delays arising, for example, by a leg being stuck and not lifting off at the desired moment, or by a foot not touching down at the right time due to a hole on the ground.

  3. As mentioned previously in this paper we don’t consider running, although it can still be achieved using the same class of models.

References

  • Baccelli F, Cohen G, Olsder G, Quadrat J (1992) Synchronization and Linearity: an Algebra for Discrete Event Systems. Wiley

  • Bede B, Nobuhara H (2009) A novel max-plus algebra based wavelet transform and its applications in image processing. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. San Antonio, Texas, pp 2585–2588

    Google Scholar 

  • Braker J (1991) Max-algebra modelling and analysis of time-table dependent transportation networks. In: Proceedings of the First European Control Conference, Grenoble, France

  • Braker J, Olsder G (1993) The power algorithm in max algebra. Linear Algebra Appl 182:67–89

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen A, Rossignol S, Grillner S (1988) Neural control of rhythmic movements in vertebrates. Wiley

  • Cohen G, Dubois D, Quadrat J, Viot M (1983) A linear-system-theoretic view of discrete-event processes. In: Proceedings of the 22nd IEEE Conference on Decision and Control. San Antonio , Texas, pp 1039–1044

  • Cohen G, Dubois D, Quadrat J, Viot M (1985) A linear-system-theoretic view of discrete-event processes and its use for performance evaluation in manufacturing. IEEE Trans Autom Control 30(3):210–220

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen G, Moller P, Quadrat J, Viot M (1989) Algebraic tools for the performance evaluation of discrete event systems. Proc IEEE 77(1):39–58

    Article  Google Scholar 

  • Cuninghame-Green R (1961) Process synchronisation in a steelworks – A problem of feasibility. In: Banbury J, Maitland J (eds) Proceedings of the 2nd international conference on operational research. London: English Universities Press, Aix-en-Provence, pp 323–328

    Google Scholar 

  • Cuninghame-Green R (1962) Describing industrial processes with interference and approximating their steady-state behaviour. Oper Res Q 13(1):95–100

    Article  Google Scholar 

  • Cuninghame-Green R (1979) Minimax algebra, lecture notes in economics and mathematical systems, vol 166. Springer-Verlag

  • De Schutter B, van den Boom T (2008) Max-plus algebra and max-plus linear discrete event systems: An introduction. In: Proceedings of the 9th International Workshop on Discrete Event Systems, Göteborg, Sweden, pp 36–42

  • Dorfler F, Bullo F (2012) Exploring synchronization in complex oscillator networks. In: IEEE Conference on Decision and Control, pp 7157–7170

  • Full R, Koditschek D (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202(23):3325–3332

    Google Scholar 

  • Gaubert S (1990) An algebraic method for optimizing resources in timed event graphs. In: Bensoussan A, Lions J (eds) Proceedings of the 9th International Conference on Analysis and Optimization of Systems, Berlin, Germany: Springer-Verlag, Antibes, France, Lecture Notes in Control and Information Sciences, vol 144, pp 957–966

  • Gaubert S (1992) Théorie des systèmes linéaires dans les dioïdes. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, France

  • Gaubert S (1993) Timed automata and discrete event systems. In: Proceedings of the 2nd European Control Conference, Groningen, The Netherlands

  • Gaubert S (1994) On rational series in one variable over certain dioids. Technical Report 2162, INRIA, Le Chesnay, France

  • Gaubert S, Mairesse J (1998) Task resource models and (max, + ) automata. In: Gunawardena J (ed) Idempotency. Cambridge University Press

  • Gaubert S, Plus M (1997) Methods and applications of (max, + ) linear algebra. In: Proceedings of the symposium on theoretical aspects of computer science. Aachen, Germany, pp 261–282

  • Giffler B (1960) Mathematical solution of production planning and scheduling problems. Technical Report IBM ASDD

  • Giffler B (1963) Scheduling general production systems using schedule algebra. Nav Res Logisti Q 10(3):237–255

    Article  Google Scholar 

  • Giffler B (1968) Schedule algebra: a progress report. Nav Res Logist Q 15 (2):255–280

    Article  Google Scholar 

  • Gondran M, Minoux M (1976) Eigenvalues and eigenvectors in semimodules and their interpretation in graph theory. In: Proceedings of the 9th International Mathematical Programming Symposium, Budapest, Hungary, pp 333–348

  • Gondran M, Minoux M (1984) Linear algebra in dioids: a survey of recent results. Ann Discrete Math 19:147–163

    MathSciNet  MATH  Google Scholar 

  • Gondran M, Minoux M (1987) Dioïd theory and its applications. In: Algèbres Exotiques et Systèmes à Evénements Discrets, CNRS/CNET/INRIA Seminar, CNET, Issy-les-Moulineaux, France, pp 57–75

  • Grillner S (1985) Neurobiological bases of rythmic motor acts in vertebrates. Science 228(4696):143–149

    Article  Google Scholar 

  • Grillner S (2011) Control of locomotion in bipeds, tetrapods, and fish. Comprehensive Physiology Supplement 2: Handbook of Physiology, The Nervous System, Motor Control, pp 1179–1236

  • Haynes G, Cohen F, Koditschek D (2009) Gait transitions for quasi-static hexapedal locomotion on level ground. In: Proceedings of the International Symposium of Robotics Research, Lucerne, Switzerland, pp 105–121

  • Heidergott B (2000) A characterisation of (max, + )-linear queueing systems. Queueing Syst Theory Appl 35:237–262

    Article  MathSciNet  MATH  Google Scholar 

  • Heidergott B, de Vries R (2001) Towards a (max, + ) control theory for public transportation networks. Discret Event Dyn Syst 11:371–398

    Article  MathSciNet  MATH  Google Scholar 

  • Heidergott B, Olsder G, van der Woude J (2006) Max plus at work: Modeling and analysis of synchronized systems. Kluwer

  • Hildebrand M (1965) Symmetrical gaits of horses. Science 150(3697):701–708

    Article  Google Scholar 

  • Holmes P, Full R, Koditschek D, Guckenheimer J (2006) The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev 48(2):207–304

    Article  MathSciNet  MATH  Google Scholar 

  • Ijspeert A (2008) Central pattern generators for locomotion control in animals and robots: A review. Neural Netw 21(4):642–653

    Article  Google Scholar 

  • Karp R (1978) A characterization of the minimum cycle mean in a digraph. Discret Math 23(3):309–311

    Article  MathSciNet  MATH  Google Scholar 

  • Klavins E, Koditschek D (2002) Phase regulation of decentralized cyclic robotic systems. Int J Robot Res 21(3):257–275

    Article  Google Scholar 

  • Lopes G, Babuška R, De Schutter B, van den Boom T (2009) Switching max-plus models for legged locomotion. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guilin, China, pp 221–226

  • Lopes G, Kersbergen B, van den Boom T, De Schutter B, Babuska R (2014) Modeling and control of legged locomotion via switching max-plus models. IEEE Trans Robot 30(3):652–665

    Article  Google Scholar 

  • Muybridge E (1901) The Human Figure in Motion. Dover Publications

  • Olsder G (1986) On the characteristic equation and minimal realizations for discrete-event dynamic systems. In: Proceedings of the 7th International Conference on Analysis and Optimization of Systems, Antibes, France, Lecture Notes in Control and Information Sciences, vol 83, pp 189–201

  • Olsder G, Roos C (1988) Cramer and Cayley- Hamilton in the max algebra. Linear Algebra Appl 101:87–108

    Article  MathSciNet  MATH  Google Scholar 

  • Olsder G, Resing J, de Vries R, Keane M, Hooghiemstra G (1990) Discrete event systems with stochastic processing times. IEEE Trans Autom Control 35(3):299–302

    Article  MathSciNet  MATH  Google Scholar 

  • Peterson J (1981) Petri Net Theory and the Modeling of Systems. Englewood Cliffs, New Jersey: Prentice Hall, Inc.

  • Raibert M (1986) Legged robots that balance. MIT Press, Cambridge

    MATH  Google Scholar 

  • Raibert M, Jr HB, Chepponis M, Koechling J, Hodgins J, Dustman D, Brennan W, Barrett D, Thompson C, Hebert J, Lee W, Borvansky L (1989) Dynamically stable legged locomotion. Technical Report 1179, MIT

  • Saranli U, Buehler M, Koditschek D (2001) RHex: a simple and highly mobile hexapod robot. Int J Robot Res 20(7):616–631

    Article  Google Scholar 

  • Shedden K (2002) Analysis of cell-cycle gene expression in Saccharomyces cerevisiae using microarrays and multiple synchronization methods. Nucleic Acids Res 30 (13):2920–2929

    Article  Google Scholar 

  • Weingarten J, Groff R, Koditschek D (2004) A framework for the coordination of legged robot gaits. In: Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, Singapore, pp 679–686

  • Yamaguchi S (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302(5649):1408–1412

    Article  Google Scholar 

  • Zhou M, DiCesare F, Desrochers A (1992) A hybrid methodology for synthesis of Petri net models for manufacturing systems. IEEE Trans Robot Autom 8(3):350–361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel A. D. Lopes.

Appendices

A: Proofs

1.1 A.1 Proof of Lemma 1

Proof

Let \(\bar {P}\) be nilpotent and \(\bar {C}\) be a similarity matrix. Let \(P=\bar {C}^{T}\otimes \bar {P}\otimes \bar {C}\). As such

$$\begin{array}{@{}rcl@{}} P^{\otimes p}&=&\left(\bar{C}^{T}\otimes \bar{P}\otimes \bar{C}\right)^{\otimes p}=\\ &=& \bar{C}^{T}\otimes \bar{P}\otimes \bar{C}\otimes \bar{C}^{T}\otimes \bar{P}\otimes \bar{C} \otimes {\cdots} \otimes \bar{C}^{T}\otimes \bar{P}\otimes \bar{C}\\ &=& \bar{C}^{T}\otimes \bar{P}^{\otimes p}\otimes \bar{C} \end{array} $$

and,

$$\begin{array}{@{}rcl@{}} \exists p_{0}> 0, \forall p\geq p_{0} :P^{\otimes p}= \bar{C}^{T}\otimes \bar{P}^{\otimes p}\otimes \bar{C}=\mathcal{E} . \end{array} $$

1.2 A.2 Proof of Lemma 2

Proof

By direct computation, the repetitive products of A 0 can be found to be

(45)

If P is max-plus nilpotent, then there exists a finite positive integer p 0 such that \(\forall p \geq p_{0} : P^{\otimes p} = \mathcal {E} \Rightarrow A_{0}^{\otimes (2 p+1)} = \mathcal {E} \), and therefore the max-plus sum for the computation of A 0 is finite:

$$ A_{0}^{*}=\bigoplus\limits_{q=0}^{\infty}A_{0}^{\otimes q}=\bigoplus\limits_{q=0}^{2p}A_{0}^{\otimes q}. $$
(46)

1.3 A.3 Proof of lemma 3

Proof

With \(\upsilon \in \mathbb {R}_{\max }^{n}\), let \([\bar {\upsilon }]_{q}=[\upsilon ]_{q+n}\) for all j and q j . Then \(\upsilon =[(\tau _{\mathrm {f}}\otimes \bar {\upsilon })^{T}~~\bar {\upsilon }^{T}]^{T}\). Recall Eqs. 8 and 9 with new variables z and B such that z = Bzb with solution z = B b. Now let z=λ⊗υ, B = A 0, and b = A 1υ. We obtain

$$\uplambda\otimes\upsilon= A_{0} \otimes \uplambda\otimes\upsilon \oplus A_{1}\otimes \upsilon= A_{0}\otimes A_{1}\otimes \upsilon=A\otimes \upsilon. $$

Given the previous result, it is sufficient to show that if λ and υ are a max-plus eigenvalue and eigenvector of A respectively, then replacing the state variable x(k−1) by υ and x(k) by λ⊗υ in Eq. 25 holds true:

The previous expression is equivalent to the following two equations:

$$\begin{array}{@{}rcl@{}} \uplambda\otimes\tau_{\mathrm{f}} \otimes \bar{\upsilon} &=& \tau_{\mathrm{f}}\otimes \bar{\upsilon} \oplus \uplambda \otimes\tau_{\mathrm{f}} \otimes \bar{\upsilon} \end{array} $$
(47)
$$\begin{array}{@{}rcl@{}} \uplambda \otimes \bar{\upsilon} &=&\tau_{\mathrm{f}}\otimes(\uplambda \otimes P\oplus \tau_{\mathrm{g}} \otimes E\oplus Q )\otimes\bar{\upsilon}\oplus\bar{\upsilon}. \end{array} $$
(48)

Since λ > 0 (by assumption A1), (47) is always verified. Thus we focus on Eq. 48, which can be simplified due to τ fτ g > 0:

$$ \uplambda\otimes \bar{\upsilon} =(\tau_{\mathrm{f}}\otimes\tau_{\mathrm{g}}) \otimes \bar{\upsilon}\oplus\tau_{\mathrm{f}}\otimes(\uplambda \otimes P\oplus Q)\otimes\bar{\upsilon}. $$
(49)

Let τ ΔP 0 = P and τ ΔQ 0 = Q, i.e., all entries of matrices P 0 and Q 0 are either e or ε to obtain (recall that τ δ = τ fτ Δ and τ γ = τ fτ g):

$$ \uplambda \otimes \bar{\upsilon} = \tau_{\gamma}\otimes \bar{\upsilon}\oplus\tau_{\delta}\otimes (\otimes P_{0}\oplus Q_{0})\otimes\bar{\upsilon}. $$
(50)

We now consider two cases:

i) First we analyze the row indices of Eq. 50 that are elements of the sets \(\ell _{2},\dots ,\ell {m}\). For each \(j\in \{1,\dots ,m-1\}\) and for each row p j+1 we obtain (notice that according to Eq. 23) all the elements of \(\left [Q_{0}\right ]_{p,\cdot }\) are ε since p 1, and that \(\left [\bar {\upsilon }\right ]_{p}=\tau _{\delta }^{\otimes j}\) for p j+1):

$$\begin{array}{@{}rcl@{}} \left[\uplambda\otimes\bar{\upsilon}\right]_{p} &=& \left[ \tau_{\gamma}\otimes \bar{\upsilon}\right]_{p}\oplus \tau_{\delta}\otimes\left[\uplambda \otimes P_{0}\oplus Q_{0} \otimes \bar{\upsilon}\right]_{p} \Leftrightarrow \end{array} $$
(51)
$$\begin{array}{@{}rcl@{}} \uplambda\otimes\left[\bar{\upsilon}\right]_{p} &=&\tau_{\gamma}\otimes\left[\bar{\upsilon}\right]_{p}\oplus \tau_{\delta}\otimes\left[\uplambda\otimes P_{0}\right]_{p,\cdot}\otimes \bar{\upsilon}\oplus \underbrace{\left[Q_{0}\right]_{p,\cdot}}_{\varepsilon} \otimes \bar{\upsilon}\Leftrightarrow \end{array} $$
(52)
$$\begin{array}{@{}rcl@{}} \uplambda\otimes \tau_{\delta}^{\otimes j} &=&\tau_{\gamma}\otimes \tau_{\delta}{j}\oplus \tau_{\delta}\otimes \bigoplus\limits_{q\in\ell_{j}} \uplambda\otimes\underbrace{\left[P_{0}\right]_{p,q}}_{\varepsilon}\otimes\left[\bar{\upsilon}\right]_{q} \Leftrightarrow \end{array} $$
(53)
$$\begin{array}{@{}rcl@{}} \uplambda\otimes\tau_{\delta}^{\otimes j} &=& \tau_{\gamma}\otimes\tau_{\delta}^{\otimes j}\oplus\tau_{\delta}\otimes \uplambda\otimes \tau_{\delta}^{\otimes j-1} \Leftrightarrow \end{array} $$
(54)
$$\begin{array}{@{}rcl@{}} \uplambda\otimes\tau_{\delta}^{\otimes j} &=& \tau_{\gamma}\otimes\tau_{\delta}^{\otimes j}\oplus\uplambda\otimes\tau_{\delta}^{\otimes j}. \end{array} $$
(55)

The last term always holds true since λ ≥ τ γ . Thus for rows \(p\in \ell _{2},\dots ,\ell _{m}\) Eq. 50 holds true.

ii) We now look at all the remaining rows p such that p 1 (noticing now that according to (22) all the elements of \(\left [P_{0}\right ]_{p,\cdot }\) are ε and that \(\left [\bar {\upsilon }\right ]_{p}= e\) since p 1):

$$\begin{array}{@{}rcl@{}} \left[\uplambda\otimes\bar{\upsilon}\right]_{p} &=& \left[\tau_{\gamma}\otimes\bar{\upsilon}\right]_{p}\oplus\tau_{\delta}\otimes\left[\uplambda \otimes P_{0}\oplus Q_{0} \right]_{p,\cdot}\otimes \bar{\upsilon} \Leftrightarrow \end{array} $$
(56)
$$\begin{array}{@{}rcl@{}} \uplambda\otimes\left[\bar{\upsilon}\right]_{p} &=&\tau_{\gamma}\oplus\tau_{\delta}\otimes\underbrace{\left[\uplambda \otimes P_{0}\right]_{p,\cdot}}_{\varepsilon}\otimes \hspace{0.8mm} \bar{\upsilon}\oplus \tau_{\delta}\otimes\left[Q_{0}\right]_{p,\cdot} \otimes \bar{\upsilon}\Leftrightarrow \end{array} $$
(57)
$$\begin{array}{@{}rcl@{}} \uplambda &=& \tau_{\gamma}\oplus \tau-{\delta}\otimes \bigoplus\limits_{q\in\ell{m}} \underbrace{\left[Q_{0}\right]_{p,q}}_{e}\otimes\left[\bar{\upsilon}\right]_{q} \Leftrightarrow \end{array} $$
(58)
$$\begin{array}{@{}rcl@{}} \uplambda&=& \tau_{\gamma}\oplus \tau_{\delta}\otimes \tau_{\delta}^{\otimes m-1} \Leftrightarrow \end{array} $$
(59)
$$\begin{array}{@{}rcl@{}} \uplambda&=& \tau_{\gamma}\oplus \tau_{\delta}^{\otimes m}. \end{array} $$
(60)

Combining i) and ii) we conclude that Eq. 50 holds true. □

1.4 A.4 Proof of lemma 4

Proof

The sub-matrices A 12, A 22, A 32, A 42, A 21 defined in Appendix B expressions (95) and 94 have all their elements different from ε. The sub-matrix A 23 has all diagonal elements different from ε. As such, any node can be reached by any other node via the rows defined by A 12, A 22, A 32, A 42 and the columns defined by A 21, A 22, A 23. Therefore \(\bar {A}\) is irreducible. Since A is a similarity transformation away from \(\bar {A}\) then we conclude that A is also irreducible. □

1.5 A.5 Proof of of lemma 5

Proof

We consider two cases: i) \(\tau _{\gamma } = \tau _{\delta }^{\otimes m}=\uplambda \). In this situation the circuits presented in Figs. 8a1 and 8a2 in page 41 all belong to the critical graph since their weights are τ γ or \(\tau _{\delta }^{\otimes m}\) both equal to the max-plus eigenvalue λ. Note that any circuit c 1 of length l made from the nodes of \(t_{\ell _{m}}\), illustrated in Fig. 8a1 in page 41, has an average weight of

$$\begin{array}{@{}rcl@{}} \frac{|c_{1}|_{w}}{|c_{1}|_{1}}=\frac{\left(\tau_{\delta}^{\otimes m}\right)^{\otimes l}}{l}=\tau_{\delta}^{\otimes m}=\uplambda, \end{array} $$
(61)

and as such also belongs to the critical graph.

Fig. 8
figure 8

Graph reductions. Touchdown and lift off events with indexes belonging to the same set q can be grouped together since they have the same number of output and input arcs with the same weights

Any other circuit in the precedence graph of \(\bar {A}\) must pass through at least one node of t m , as illustrated in Figs. 9b, c1, and c2 (with the exception of the self-loops in Fig. 8a3 and the circuits in Fig. 8a4 that we don’t consider since their weights are e and τ γ /2 both less then λ). Additionally, arcs starting in nodes from a group t q with q < m are only connected to nodes in t q+p for p≥0 (or l q+p ). This is again illustrated in Figs. 9a, c1, and c2. Let t [ q] i denote element i of t q . Consider the circuit

$$ c_{2}:t_{[\ell{m}]_{i}} \to t_{[\ell{q}]_{j}}\to t_{[\ell{m}]_{i}}, $$
(62)

with q<m. The average weight is (with \(\tau _{\gamma } = \tau _{\delta }^{\otimes m}\))

$$\begin{array}{@{}rcl@{}} \frac{|c_{2}|_{w}}{|c_{2}|_{1}}=\frac{\tau_{\delta}^{\otimes q}\otimes \tau_{\gamma}\otimes \tau_{\delta}^{\otimes (m-q)}}{2}=\frac{\tau_{\delta}^{\otimes m}\otimes \tau_{\gamma}}{2}=\uplambda. \end{array} $$
(63)
Fig. 9
figure 9

Elements of the precedence graph of the system matrix A. The total precedence graph of A is composed of all the arcs presented in a) and b), together with the m−1 remaining subgraphs that follow the pattern of Figures c1) and c2)

Circuit c 2 is thus also in the critical graph. For the general circuit of the type

$$\begin{array}{@{}rcl@{}} c_{3}:t_{[\ell{m}]_{i}} \to \underbrace{ t_{[\ell{q_{1}}]_{j_{1}}}\to t_{[\ell{q_{2}}]_{j_{2}}}\to {\cdots} \to t_{[\ell{q_{l}}]_{j_{l}}}}_{l \text{~nodes}}\to t_{[\ell{m}]_{i}}, \end{array} $$
(64)

with q 1<q 2<⋯<q l <m, the average weight is

$$\begin{array}{@{}rcl@{}} \frac{|c_{3}|_{w}}{|c_{3}|_{1}}&=&\frac{\tau_{\gamma}^{\otimes l}\otimes \tau_{\delta}^{\otimes q_{1}}\otimes \tau_{\delta}f^{\otimes (q_{2}-q_{1})}\otimes {\cdots} \otimes \tau_{\delta}^{\otimes (m-q_{l})}}{l+1}\\ &=&\frac{\tau_{\gamma}^{\otimes l}\otimes\tau_{\delta}^{\otimes m}}{l+1}=\uplambda. \end{array} $$

Again, circuit c 3 is part of the critical graph. Any circuit that passes through any node in l q , for any q, will never be in the critical graph. This is due to the fact that arcs within touchdown nodes of different leg groups yield a higher weight:

$$\begin{array}{@{}rcl@{}} t_{[\ell{q}]_{i}}\to t_{[\ell{p}]_{j}}&~~&\text{weight:}~\tau_{\gamma}\otimes\tau_{\Delta}^{\otimes (q-p)} \end{array} $$
(65)
$$\begin{array}{@{}rcl@{}} t_{[\ell{q}]_{i}}\to l_{[\ell{p}]_{j}}&~~&\text{weight:}~\tau_{\mathrm{g}}\otimes\tau_{\Delta}^{\otimes (q-p)} \end{array} $$
(66)
$$\begin{array}{@{}rcl@{}} l_{[\ell{q}]_{i}}\to t_{[\ell{p}]_{j}}&~~&\text{weight:}~\tau_{\mathrm{f}}\otimes\tau_{\Delta}^{\otimes (q-p)} \end{array} $$
(67)
$$\begin{array}{@{}rcl@{}} l_{[\ell{q}]_{i}}\to l_{[\ell{p}]_{j}}&~~&\text{weight:}~\tau_{\Delta}^{\otimes (q-p)}. \end{array} $$
(68)

As such, a path that connects a touchdown node to a lift off node “loses” τ γ τ g = τ f from the maximum possible weight, a path from lift off to lift off nodes loses τ γ , and a path from lift off nodes to touchdown nodes loses τ g in weight. This can also be observed in the structure of \(\bar {A}\), in Eq. 92, where the sub-matrix τ f⊗(τ gWV) overcomes the sub-matrices τ gWV, τ fW, and W. Consider, for example, the circuit c 4:

$$ c_{4}:t_{[\ell{m}]_{i}} \to t_{[\ell{p}]_{j_{0}}}\to l_{[\ell{p+q}]_{j_{q}}} \to t_{[\ell{m}]_{i}}, $$
(69)

then

$$\begin{array}{@{}rcl@{}} \frac{|c_{4}|_{w}}{|c_{4}|_{1}}&=&\frac{\tau_{\delta}^{\otimes p}\otimes(\tau_{\mathrm{g}}\otimes\tau_{\delta}^{\otimes q})\otimes\left( \tau_{\mathrm{f}}\otimes \tau_{\delta}^{\otimes (m-(p+q))}\right)}{3}\\ &=&\frac{\tau_{\gamma}\otimes\tau_{\delta}^{\otimes m}}{3}<\uplambda. \end{array} $$

Since all the nodes in the critical graph are connected (they are all touchdown nodes) we conclude that for the case \(\tau _{\gamma }=\tau _{\delta }^{\otimes m}=\uplambda \) the critical graph of \(\bar {A}\) has a single strongly connected subgraph. Figure 5a in page 25 illustrates the complete critical graph of \(\bar {A}\) for this case.

ii) \(\tau _{\gamma } < \tau _{\delta }^{\otimes m}=\uplambda \). In this situation only circuits of the type c 1 are part of the critical graph. Circuits of the type c 2 or c 3 are not part of the critical graph. Figure 5b illustrates the resulting critical graph of \(\bar {A}\). Since all the nodes of t m are connected to each other we conclude that for the case \(\tau _{\gamma }<\tau _{\delta }^{\otimes m}=\lambda \) the critical graph of \(\bar {A}\) has a single strongly connected subgraph.

A third case can be considered: \(\tau _{\delta }^{\otimes m}< \tau _{\gamma }=\uplambda \). In this situation the critical graph of \(\bar {A}\) does not have a single strongly connected subgraph. Figure 5c illustrates this situation, that we document here without proof. □

1.6 A.6 Proof of theorem 3

Proof

According to Lemma 4 Matrix A is irreducible, and as such it has a unique max-plus eigenvalue. According to Lemma 5 the critical graph of \(\mathcal {G}^{c}(A)\) has a single strongly connected subgraph, and as such its max-plus eigenvector is unique up to a max-plus scaling factor (see Baccelli et al. (1992), Theorem 3.101). □

1.7 A.7 Proof of lemma 6

Proof

Computing successive products of \(\bar {A}\) and taking advantage of its structure, which can be found in Appendix B, and Eqs. 8385 one can write its p-th power \(\bar {A}^{\otimes p}\), valid for all p ≥ 2, illustrated by Eqs. 72 and 74.

By inspection of the expression of \(\bar {A}^{\otimes p}\) in Eqs. 7274 one can observe that most terms are max-plus multiplying by a power of the max-plus eigenvalue λ (recall that with assumption A2 we have \(\uplambda = \tau _{\delta }^{\otimes m}\)). To factor out λ of the matrix composed by expressions Eqs. 72 and 74 we show that

$$\begin{array}{@{}rcl@{}} &&{\uplambda}^{\otimes(p-2)}\otimes\tau_{\mathrm{f}}\otimes\tau_{\mathrm{g}}\otimes V\otimes W \geq\tau_{\mathrm{f}}^{\otimes(p-1)}\otimes\tau_{\mathrm{g}}^{\otimes p}\otimes W \Leftrightarrow\\ &&\tau_{\mathrm{g}}\otimes{\uplambda}^{\otimes(p-2)}\otimes\tau_{\mathrm{f}}\otimes V\otimes W \geq \tau_{\mathrm{g}}\otimes\tau_{\gamma}^{\otimes(p-1)}\otimes W. \end{array} $$
(70)

Since λ ≥ τ γ it is sufficient to show that

$$ \tau_{\mathrm{f}}\otimes V\otimes W \geq \tau_{\gamma}\otimes W. $$
(71)

This can be confirmed by inspecting Eq. 88 and 76:

  1. 1.

    All the terms in the upper block triangle of τ γ W are ε while for τ fVW they are positive numbers.

  2. 2.

    In the block diagonal \([\tau _{\mathrm {f}}\otimes V \otimes W]_{i,i}=\tau _{\delta }^{\otimes m}\otimes \mathbb{1} \geq \tau _{\gamma } \otimes E=[\tau _{\gamma }\otimes W]_{i,i}\), by assumption A2.

  3. 3.

    In the lower block triangle \([\tau _{\mathrm {f}}\otimes W\otimes W]_{i,j}=\tau _{\delta }^{\otimes (m+i-j)}\otimes \mathbb {1} \geq \tau _{\delta }^{\otimes (i-j)}\otimes \tau _{\gamma } \otimes \mathbb {1}=[\tau _{\gamma }\otimes W]_{i,j}\), by assumption A2.

Taking advantage of this simplification one can obtain Eqs. 73, 75, and 7779 (with ⊗ omitted in unambiguous locations). Together with the similarity transformation we obtain the result valid for p ≥ 2:

$$\begin{array}{@{}rcl@{}} A^{\otimes (p+1)}= C\otimes \bar{A}^{\otimes (p+1)}\otimes C^{T}=C\otimes\uplambda\otimes \bar{A}^{\otimes p}\otimes C^{T}=\uplambda\otimes A^{\otimes p}, \end{array} $$

thus concluding that the coupling time is k 0 z=2 with cyclicity c=1. □

$$\begin{array}{@{}rcl@{}} \left[\bar{A}^{\otimes p}\right]_{\cdot ,1}&=&\left[\begin{array}{ccc} \tau_{\mathrm{f}}\left( {\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}\tau_{\mathrm{g}}VW \oplus {\uplambda}^{\otimes(p-1)}V \oplus \tau_{\mathrm{f}}^{\otimes(p-1)}\tau_{\mathrm{g}}^{\otimes p W}\right)\\ {\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}\tau_{\mathrm{g}}VW \oplus {\uplambda}^{\otimes(p-1)}V \oplus \tau_{\mathrm{f}}^{\otimes(p-1)}\tau_{\mathrm{g}}^{\otimes p W} \end{array}\right] \end{array} $$
(72)
$$\begin{array}{@{}rcl@{}} &=&\left[\begin{array}{ccc} \tau_{\mathrm{f}}\left( {\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}\tau_{\mathrm{g}}VW \oplus{\uplambda}^{\otimes(p-1)}V\right)\\ {\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}\tau_{\mathrm{g}}VW \oplus {\uplambda}^{\otimes(p-1)}V \end{array}\right] \end{array} $$
(73)
$$\begin{array}{@{}rcl@{}} \left[\bar{A}^{\otimes p}\right]_{\cdot,2}&=& \left[\begin{array}{cccc} \tau_{\mathrm{f}}\left( \ell^{\otimes(p-2)}\tau_{\mathrm{f}}V W \oplus (\tau_{\mathrm{f}}\tau_{\mathrm{g}})^{\otimes(p-1)}W\right)\\{\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}V W \oplus (\tau_{\mathrm{f}}\tau_{\mathrm{g}})^{\otimes(p-1)}W \end{array}\right] \end{array} $$
(74)
$$\begin{array}{@{}rcl@{}} &=&\left[\begin{array}{cccc} \tau_{\mathrm{f}}\left( {\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}V W \right)\\{\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}V W \end{array}\right] \end{array} $$
(75)
$$\begin{array}{@{}rcl@{}} \tau_{\mathrm{f}}\otimes V\otimes W=\left[\begin{array}{ccccc} \tau_{\delta}^{\otimes m}\otimes\bar{\mathbb{1}}_{1,1}&\cdots&\tau_{\delta}\otimes\bar{\mathbb{1}}_{1,m}\\\vdots&\ddots&\vdots\\\tau_{\delta}^{\otimes (2m-1)}\otimes\bar{\mathbb{1}}_{m,1}&\cdots&\tau_{\delta}^{\otimes m}\otimes\bar{\mathbb{1}}{m,m} \end{array}\right] \end{array} $$
(76)
$$\begin{array}{@{}rcl@{}} \bar{A}^{\otimes (p+1)}&=&\left[\begin{array}{cc} \tau_{\mathrm{f}}\left( {\uplambda}^{\otimes(p-1)}\tau_{\mathrm{f}}\tau_{\mathrm{g}}VW \oplus {\uplambda}^{\otimes p}V\right) &~~~~~~\tau_{\mathrm{f}}\left( {\uplambda}^{\otimes(p-1)}\tau_{\mathrm{f}}VW \right)\\ {\uplambda}^{\otimes(p-1)}\tau_{\mathrm{f}}\tau_{\mathrm{g}}VW \oplus {\uplambda}^{\otimes p}V &~~~~~~ {\uplambda}^{\otimes(p-1)}\tau_{\mathrm{f}}VW \end{array}\right] \end{array} $$
(77)
$$\begin{array}{@{}rcl@{}} &=&\uplambda\otimes\left[\begin{array}{cc} \tau_{\mathrm{f}}\left( {\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}\tau_{\mathrm{g}}VW \oplus {\uplambda}^{\otimes(p-1)}V\right) &~~~~~~\tau_{\mathrm{f}}\left( {\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}VW \right)\\{\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}\tau_{\mathrm{g}}VW \oplus {\uplambda}^{\otimes(p-1)}V &~~~~~~ {\uplambda}^{\otimes(p-2)}\tau_{\mathrm{f}}VW\end{array}\!\right] \end{array} $$
(78)
$$\begin{array}{@{}rcl@{}} &=&\uplambda\otimes \bar{A}^{\otimes p} \end{array} $$
(79)

B Structure of the system matrix \(\bar {A}\)

For an arbitrary gait the internal structure of A can be quite complex. However, the gait G associated to A can be transformed into a normal gait via a similarity transformation. Let

$$ C=\left[\begin{array}{cc} \bar{C}&\mathcal{E} \\\mathcal{E}&\bar{C}\end{array}\right]. $$
(80)

The similarity matrix C transforms the system matrix A of an arbitrary gait G into the system matrix \(\bar {A}\) of a normal gait \(\bar {\mathrm {G}}\) via the similarity transformation

$$\bar{A}=C \otimes A \otimes C^{T}. $$

This can be shown by direct computation:

$$C \otimes A \otimes C^{T}= C \otimes A_{0}^{*}\otimes C^{T}\otimes C\otimes A_{1} \otimes C^{T}=A_{0}^{*}\otimes \bar{A}_{1}=\bar{A}. $$

Transforming an arbitrary gait into a normal gait is very useful since, by effectively switching rows and columns in A, one obtains a very structured matrix \(\bar {A}\) for which a structural analysis is much easier. The interpretation of the similarity matrix \(\bar {C}\) is that legs can be renumbered, simplifying algebraic manipulation. Besides max-plus nilpotency, other properties are invariant to similarity transformations: irreducibility is preserved since the graphs of A and \(\bar {A}\) are equivalent up to a label renaming. Max-plus eigenvalues and eigenvectors are related by:

$$\begin{array}{@{}rcl@{}} &&A \otimes \upsilon = \uplambda\otimes \upsilon\\ &\Leftrightarrow& C\otimes A\otimes C^{T}\otimes C\otimes \upsilon = \uplambda \otimes C\otimes \upsilon\\ &\Leftrightarrow& \bar{A} \otimes \bar{\upsilon} = \uplambda \otimes \bar{\upsilon},\text{~with~}\bar{\upsilon}= C\otimes \upsilon. \end{array} $$

The structure of \(\bar {A}\) can be obtained via a laborious but straightforward set of algebraic manipulations. For an arbitrary gait G we compute the normal gait \(\bar {\mathrm {G}}\) via the similarity transformation with the matrix C. By observing the structures of \(\bar {A}_{0}^{*}\) and \(\bar {A}_{1}\) (derived from \(\bar {P}\) and \(\bar {Q}\)) a closed-form solution can be obtained for \(\bar {A}_{0}^{*}\):

$$\begin{array}{@{}rcl@{}} \bar{A}_{0}^{*}=\left[\begin{array}{ccc}W&~~~~\tau_{\mathrm{f}}\otimes W\\\bar{W}&~~~~W\end{array}\right], \end{array} $$
(81)

where W=(τ fP), illustrated in Eq. 88 on page 37. The matrix \(\bar {W}\) is defined in Eq. 87 again on page 37. Note that \(\tau _{\mathrm {f}}\otimes \bar {W}\oplus E=W\) and \(W \geq \bar {W}\). An expression for \(\bar {A}\) is then obtained:

$$\begin{array}{@{}rcl@{}} \bar{A}&=&\bar{A}_{0}^{*}\otimes \bar{A}_{1}=\left[\begin{array}{ccccc} W&~~~~\tau_{\mathrm{f}}\otimes W\\ \bar{W}&~~~~W\end{array}\right] \otimes\left[\begin{array}{cccccc}E&~~~~\mathcal{E} \\ \tau_{\mathrm{g}}\otimes E\oplus \bar{Q}&~~~~E\end{array}\right]\\ &=&\left[\begin{array}{ccccc} W\oplus\tau_{\mathrm{f}}\otimes\tau_{\mathrm{g}}\otimes W\oplus\tau_{\mathrm{f}}\otimes W\otimes \bar{Q} &~~~~ \tau_{\mathrm{f}}\otimes W\\ \bar{W}\oplus\tau_{\mathrm{g}}\otimes W\oplus W\otimes\bar{Q} & ~~~~W\end{array}\right]. \end{array} $$
(82)

Let \(V=W\otimes \bar {Q}\), as illustrated by Eq. 89. One can show that:

$$\begin{array}{@{}rcl@{}} &&W\otimes W=W \end{array} $$
(83)
$$\begin{array}{@{}rcl@{}} &&W\otimes V=V \end{array} $$
(84)
$$\begin{array}{@{}rcl@{}} &&V\otimes V=\tau_{\delta}^{\otimes(m-1)}\otimes\tau_{\Delta}\otimes V. \end{array} $$
(85)

Since μVW for any μ>0, and \(W \geq \bar {W}\), expression (82) simplifies to:

$$\begin{array}{@{}rcl@{}} \bar{A}=\left[\begin{array}{cccc} \tau_{f}\otimes(\tau_{g}\otimes W\oplus V) & ~~~~\tau_{f}\otimes W\\ \tau_{g}\otimes W\oplus V & ~~~~W\end{array}\right] . \end{array} $$
(86)
$$\begin{array}{@{}rcl@{}} \text{\!Let~}t_{\ell_{i}}(k)&=&\left[\begin{array}{cccc}t_{[\ell_{i}]_{1}}(k)&t_{[\ell_{i}]_{2}}(k)&\cdots&t_{[\ell_{i}]_{\#\ell_{i}}}(k)^{T}\end{array}\right]\\ \text{and~}l_{\ell_{i}}(k)&=&\left[\begin{array}{cccc}l_{[\ell_{i}]_{1}}(k)&l_{[\ell_{i}]_{2}}(k)&\cdots&l_{[\ell_{i}]_{\#\ell_{i}}}(k)^{T}\end{array}\right]. \end{array} $$

Equations 9093 illustrate the resulting structure of \(\bar {A}\) written in the system form \(\bar {x}(k)=\bar {A}\otimes \bar {x}(k-1)\), with \(\bar {x}(k)=C\otimes x(k)\), and \(\bar {E}_{i}=E_{\#\ell _{i}}\).

$$\begin{array}{@{}rcl@{}} W = \tau_{\Delta}\otimes\left[\begin{array}{cccccc}\mathcal{E} & &~~~~~~~~~ & \cdots~~~~~~&\mathcal{E} \\ \bar{\mathbb{1}}_{2,1} &\mathcal{E}&&&\vdots\\ \tau_{\delta}\otimes\bar{\mathbb{1}}_{3,1} &\bar{\mathbb{1}}_{3,2}&\mathcal{E}&&\\ {\vdots} &&~~~~~~{\ddots}&~~~~~~{\ddots}~~~~~~&\\ \tau_{\delta}^{\otimes (m-2)}\otimes\bar{\mathbb{1}}_{m,1} &\cdots& \tau_{\delta}\otimes\bar{\mathbb{1}}_{m,m-1}&~~~ \bar{\mathbb{1}}_{m,m-2}~~~&\mathcal{E}\end{array}\right] \end{array} $$
(87)
$$\begin{array}{@{}rcl@{}} W= \left[\begin{array}{cccccc}\bar{E}_{1} & & ~~~~~~~~~& \cdots~~~~&\mathcal{E}\\ \tau_{\delta}\otimes\bar{\mathbb{1}}_{2,1} &\bar{E}_{2}&&&\vdots\\ \tau_{\delta}^{\otimes 2}\otimes\bar{\mathbb{1}}_{3,1} &\tau_{\delta}\otimes\bar{\mathbb{1}}_{3,2}&\bar{E}_{3}&&\\ {\vdots} &&~~~~~~{\ddots}&~~~~~~~~{\ddots}~~~~&\\ \tau_{\delta}^{\otimes (m-1)}\otimes\bar{\mathbb{1}}_{m,1} &\cdots& \tau_{\delta}^{\otimes 2}\otimes\bar{\mathbb{1}}_{m,m-2}&~~~ \tau_{\delta}\otimes\bar{\mathbb{1}}_{m,m-1}~~~&\bar{E}_{m}\end{array}\right] \end{array} $$
(88)
$$ V=\left[\begin{array}{c|c} &\tau_{\triangle}\otimes\bar{\mathbb{1}}_{1, m}\\ &\tau_{\triangle}\otimes\tau_{\delta}\otimes\bar{\mathbb{1}}_{2, m}\\ \mathcal{E}_{n, (n-m)}&\\[-5pt] &\vdots\\ &\tau_{\triangle}\otimes\tau_{\delta}^{\otimes(m-1)}\otimes\bar{\mathbb{1}}_{m, m}\end{array}\right] $$
(89)

With (the ⊗ operator is omitted in unambiguous locations):

(90)
(91)
(92)
(93)
(94)
(95)

C Precedence Graph of \(\bar {A}\)

With the structure given it is possible to construct the precedence graph of \(\bar {A}\). Since this graph can be quite large for a general \(\bar {A}\), we find it more efficient to first group “similar” nodes into a single node, i.e. apply a procedure called node reduction (Fig. 8 in page 41). Next, we show various subgraphs of the graph of \(\bar {A}\) to better illustrate its structure (Fig. 9 in page 42). The total precedence graph of \(\bar {A}\) is thus the combination of Figs. 8 and 9.

The process of constructing the graph of \(\bar {A}\) starts by grouping all nodes of an event associated with a group of legs i into a single node. This can be accomplished since event nodes from the same group of legs i have “similar” incoming and outgoing arcs. As an example, consider the first set of # 1 rows of \(\bar {A}\) as defined in expression (89):

$$\begin{array}{@{}rcl@{}} t_{\ell_{1}}(k)&=&\tau_{\gamma}\otimes E_{1} \otimes t_{\ell_{1}}(k-1)\oplus\tau_{\delta}\otimes \mathbb{1}_{1,m}\otimes t_{\ell{m}}(k-1)\oplus\\ &&\tau_{\delta}\otimes E_{1}\otimes l_{\ell_{1}}(k-1). \end{array} $$
(96)

The precedence graph for Eq. 96 consists of 3×# 1 nodes, since it involves the vectors \(t_{\ell _{1}}\), \(t_{\ell _{m}}\), and \(l_{\ell _{1}}\). The relation between \(t_{\ell _{1}}(k)\) and \(t_{\ell _{1}}(k-1)\) results in # 1 self connected arcs in the t 1 events with weights τ γ . Instead of expressing all elements of \(t_{\ell _{1}}\) as individual nodes with self arcs, we reduce then to a single node with one self arc, as seen in Fig. 8a2. The dashed attribute used on the self arc indicates that for each node in the group only self arcs exist, as expressed by the “connecting” matrix E 1. The relation between \(t_{\ell _{1}}(k)\) and \(t_{\ell _{m}}(k-1)\) is somewhat more involved, since it contains # 1×# m arcs, as expressed by the connecting matrix 𝟙1,m . The resulting node reduction is illustrated in Fig. 8b1. The node reduction for the relation between \(t_{\ell _{1}}\) and \(l_{\ell _{1}}\) is illustrated in Fig. 8a4. Again we use dashed attributes on the arcs to represent the connecting matrix E 1. For all other relations with connecting matrices 𝟙 we use solid arcs. We make an exception in Figs. 8-c1 to c4 where different line attributes are used to distinguish arcs from \(t_{\ell _{p}}\to t_{\ell _{q}}\), \(t_{\ell _{p}}\to l_{\ell _{q}}\), etc. The same line attributes are used in Figs. 9c1 and c2. Note that multiple incoming arcs to a node are related via the ⊕ operation, e.g. as in the example Eq. 96 the node \(t_{\ell _{1}}\) has 3 incoming arcs, illustrated in Fig. 9.

The following list summarizes the node reduction:

  • Figure 8a1 illustrates node reduction of the term \(\tau _{\delta }^{\otimes m}\otimes \mathbb {1}_{m,m}\) of sub-matrix A 22 from expression (95).

  • Figure 8a2 illustrates the node reduction of the block diagonal of matrix A 11 and the \(\tau _{\gamma }\otimes \bar {E}_{m}\) term of A 22.

  • Figure 8a3 illustrates the node reduction of the block diagonal of matrix \([A_{33}^{T}~~A_{43}^{T}]^{T}\).

  • Figure 8a4 illustrates the node reduction of the term τ g E m of sub-matrix A 42 together with the block diagonals of matrices A 31 and \([A_{13}^{T}~~A_{23}^{T}]^{T}\).

  • Figures 8b1 and b2 illustrate the node reduction for the columns formed by the matrices (not including the term τ g E m from matrix A 42 already represented in Fig. 8a4) A 12 and \([A_{32}^{T}~~A_{42}^{T}]^{T}\) respectively.

  • Figures. 8c1 to c4 illustrate the node reduction of the off-diagonal elements of matrices τ γ W, τ f W, τ g W, and W, from expression (92) respectively. Given the node reduction one can now proceed to construct the precedence graph of \(\bar {A}\):

  • Figure 9a is the graph of the block diagonal of \(\bar {A}\) together with the block diagonals of the sub-matrices \(\left [\begin {array}{cc}A_{31}&A_{32}\\A_{41}&A_{42}\end {array}\right ]\) and \(\left [A_{13}^{T}~~A_{23}^{T}\right ]^{T}\) using the node reductions presented in Figs. 8a1 to a4.

  • Figure 9b is the graph of the columns formed by the matrices A 12 and \(\left [A_{32}^{T}~~A_{42}^{T}\right ]^{T}\) using node reductions presented in Figs. 8b1 and b2.

  • Figures 9c1 and c2 illustrate two subgraphs of the remaining columns of \(\bar {A}\). Note that we only present the subgraphs of the first sets of # 1 and # 2 out of a total of m−1 columns. These follow the same pattern. We use different attributes on the arcs, such as dashed, thick solid, etc., to distinguish the different node reductions, as presented in Figs. 8c1 to c4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, G.A., Kersbergen, B., De Schutter, B. et al. Synchronization of a class of cyclic discrete-event systems describing legged locomotion. Discrete Event Dyn Syst 26, 225–261 (2016). https://doi.org/10.1007/s10626-014-0206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-014-0206-6

Keywords

Navigation