Skip to main content

Advertisement

Log in

The biological function of IGF2BPs and their role in tumorigenesis

  • Review
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) pertain to a highly conservative RNA-binding family that works as a post-transcriptional fine-tuner for target transcripts. Emerging evidence suggests that IGF2BPs regulate RNA processing and metabolism, including stability, translation, and localization, and are involved in various cellular functions and pathophysiologies. In this review, we summarize the roles and molecular mechanisms of IGF2BPs in cancer development and progression. We mainly discuss the functional relevance of IGF2BPs in embryo development, neurogenesis, metabolism, RNA processing, and tumorigenesis. Understanding IGF2BPs role in tumor progression will provide new insight into cancer pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bakkar N et al (2018) Artificial intelligence in neurodegenerative disease research: use of IBM Watson to identify additional RNA-binding proteins altered in amyotrophic lateral sclerosis. Acta Neuropathol 135(2):227–247

    Article  CAS  PubMed  Google Scholar 

  2. Degrauwe N et al (2016) IMPs: an RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer. Genes Dev 30(22):2459–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dominissini D et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206

    Article  CAS  PubMed  Google Scholar 

  4. Bell JL et al (2013) Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 70(15):2657–2675

    Article  CAS  PubMed  Google Scholar 

  5. Nielsen J et al (2003) Nuclear transit of human zipcode-binding protein IMP1. Biochem J 376(Pt 2):383–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farina KL et al (2003) Two ZBP1 KH domains facilitate beta-actin mRNA localization, granule formation, and cytoskeletal attachment. J Cell Biol 160(1):77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nielsen J et al (2004) Sequential dimerization of human zipcode-binding protein IMP1 on RNA: a cooperative mechanism providing RNP stability. Nucleic Acids Res 32(14):4368–4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh V et al (2020) The mRNA-binding protein IGF2BP1 maintains intestinal barrier function by up-regulating occludin expression. J Biol Chem 295(25):8602–8612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hansen TV et al (2004) Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice. Mol Cell Biol 24(10):4448–4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pillas D et al (2010) Genome-wide association study reveals multiple loci associated with primary tooth development during infancy. PLoS Genet 6(2): e1000856

  11. Wu J et al (2020) Igf2bp1 is required for hepatic outgrowth during early liver development in zebrafish. Gene 744: 144632

  12. Wang Z et al (2020) InDels within caprine IGF2BP1 intron 2 and the 3’-untranslated regions are associated with goat growth traits. Anim Genet 51(1):117–121

    Article  CAS  PubMed  Google Scholar 

  13. Dai N et al (2015) IGF2BP2/IMP2-Deficient mice resist obesity through enhanced translation of Ucp1 mRNA and Other mRNAs encoding mitochondrial proteins. Cell Metab 21(4):609–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu HB et al (2019) RNA-Binding Protein IGF2BP2/IMP2 is a Critical Maternal Activator in Early Zygotic Genome Activation. Adv Sci (Weinh) 6(15):1900295

    Article  CAS  Google Scholar 

  15. Song Y et al (2019) Endometrial genome-wide DNA methylation patterns of Guanzhong dairy goats at days 5 and 15 of the gestation period. Anim Reprod Sci 208: 106124

  16. Xueqing H et al (2020) IGF2BP3 May Contributes to Lung Tumorigenesis by Regulating the Alternative Splicing of PKM. Front Bioeng Biotechnol 8:679

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mori H et al (2001) Expression of mouse igf2 mRNA-binding protein 3 and its implications for the developing central nervous system. J Neurosci Res 64(2):132–143

    Article  CAS  PubMed  Google Scholar 

  18. Hammer NA et al (2005) Expression of IGF-II mRNA-binding proteins (IMPs) in gonads and testicular cancer. Reproduction 130(2):203–212

    Article  CAS  PubMed  Google Scholar 

  19. Yisraeli JK (2005) VICKZ proteins: a multi-talented family of regulatory RNA-binding proteins. Biol Cell 97(1):87–96

    Article  CAS  PubMed  Google Scholar 

  20. Boylan KL et al (2008) Motility screen identifies Drosophila IGF-II mRNA-binding protein--zipcode-binding protein acting in oogenesis and synaptogenesis. PLoS Genet 4(2): e36

  21. Perycz M et al (2011) Zipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons. J Neurosci 31(14):5271–5285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Donnelly CJ et al (2011) Limited availability of ZBP1 restricts axonal mRNA localization and nerve regeneration capacity. EMBO J 30(22):4665–4677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Urbanska AS et al (2017) ZBP1 phosphorylation at serine 181 regulates its dendritic transport and the development of dendritic trees of hippocampal neurons. Sci Rep 7(1):1876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhang HL et al (2001) Neurotrophin-induced transport of a beta-actin mRNP complex increases beta-actin levels and stimulates growth cone motility. Neuron 31(2):261–275

    Article  CAS  PubMed  Google Scholar 

  25. Baj G et al (2016) Signaling pathways controlling activity-dependent local translation of BDNF and their localization in dendritic arbors. J Cell Sci 129(14):2852–2864

    CAS  PubMed  Google Scholar 

  26. Fujii Y, Kishi Y, Gotoh Y (2013) IMP2 regulates differentiation potentials of mouse neocortical neural precursor cells. Genes Cells 18(2):79–89

    Article  CAS  PubMed  Google Scholar 

  27. Degrauwe N et al (2016) The RNA Binding Protein IMP2 Preserves Glioblastoma Stem Cells by Preventing let-7 Target Gene Silencing. Cell Rep 15(8):1634–1647

    Article  CAS  PubMed  Google Scholar 

  28. Tarsitano A et al (2016) Laminin-5 and insulin-like growth factor-II mRNA binding protein-3 (IMP3) expression in preoperative biopsy specimens from oral cancer patients: Their role in neural spread risk and survival stratification. J Craniomaxillofac Surg 44(12):1896–1902

    Article  PubMed  Google Scholar 

  29. Zhang X et al (2018) Interrogation of nonconserved human adipose lincRNAs identifies a regulatory role of linc-ADAL in adipocyte metabolism. Sci Transl Med 10(446)

  30. Chen J et al (2019) Integrative Analyses of mRNA Expression Profile Reveal the Involvement of IGF2BP1 in Chicken Adipogenesis. Int J Mol Sci 20(12)

  31. Tybl E et al (2011) Overexpression of the IGF2-mRNA binding protein p62 in transgenic mice induces a steatotic phenotype. J Hepatol 54(5):994–1001

    Article  CAS  PubMed  Google Scholar 

  32. Dai N (2020) The Diverse Functions of IMP2/IGF2BP2 in Metabolism. Trends Endocrinol Metab 31(9):670–679

    Article  CAS  PubMed  Google Scholar 

  33. Udler MS et al (2018) Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med 15(9):e1002654

  34. Wang J, Chen L, Qiang P (2021) The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell Int 21(1):99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Schaeffer V et al (2012) RNA-binding protein IGF2BP2/IMP2 is required for laminin-beta2 mRNA translation and is modulated by glucose concentration. Am J Physiol Renal Physiol 303(1):F75-82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen BH et al (2016) Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations. Diabetes 65(12):3794–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Janiszewska M et al (2012) Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes Dev 26(17):1926–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huo FC, Zhu ZM, Pei DS (2020) N(6) -methyladenosine (m(6) A) RNA modification in human cancer. Cell Prolif 53(11): e12921

  39. Zhu ZM, Huo FC, Pei DS (2020) Function and evolution of RNA N6-methyladenosine modification. Int J Biol Sci 16(11):1929–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang H et al (2018) Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol 20(3):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oleynikov Y, Singer RH (2003) Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization. Curr Biol 13(3):199–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnson CD et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67(16):7713–7722

    Article  CAS  PubMed  Google Scholar 

  43. Stoskus M et al (2016) ETV6/RUNX1 transcript is a target of RNA-binding protein IGF2BP1 in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia. Blood Cells Mol Dis 57:30–34

    Article  CAS  PubMed  Google Scholar 

  44. Huttelmaier S et al (2005) Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438(7067):512–515

    Article  PubMed  CAS  Google Scholar 

  45. Muller S et al (2020) The oncofetal RNA-binding protein IGF2BP1 is a druggable, post-transcriptional super-enhancer of E2F-driven gene expression in cancer. Nucleic Acids Res 48(15):8576–8590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Boudoukha S, Cuvellier S, Polesskaya A (2010) Role of the RNA-binding protein IMP-2 in muscle cell motility. Mol Cell Biol 30(24):5710–5725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dai N et al (2011) mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev 25(11):1159–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moraes KC et al (2003) Identification and characterization of proteins that selectively interact with isoforms of the mRNA binding protein AUF1 (hnRNP D). Biol Chem 384(1):25–37

    Article  CAS  PubMed  Google Scholar 

  49. Schneider T et al (2019) Combinatorial recognition of clustered RNA elements by the multidomain RNA-binding protein IMP3. Nat Commun 10(1):2266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jia M, Gut H, Chao JA (2018) Structural basis of IMP3 RRM12 recognition of RNA. RNA 24(12):1659–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jonson L et al (2014) IMP3 RNP safe houses prevent miRNA-directed HMGA2 mRNA decay in cancer and development. Cell Rep 7(2):539–551

    Article  PubMed  CAS  Google Scholar 

  52. Li Z et al (2018) The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat Commun 9(1):1572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wang S et al (2019) Enhancement of LIN28B-induced hematopoietic reprogramming by IGF2BP3. Genes Dev 33(15–16):1048–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang X et al (2018) Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in cancer. J Hematol Oncol 11(1):88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Xu Y et al (2017) Modulation of IGF2BP1 by long non-coding RNA HCG11 suppresses apoptosis of hepatocellular carcinoma cells via MAPK signaling transduction. Int J Oncol 51(3):791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kessler SM et al (2017) IMP2/IGF2BP2 expression, but not IMP1 and IMP3, predicts poor outcome in patients and high tumor growth rate in xenograft models of gallbladder cancer. Oncotarget 8(52):89736–89745

    Article  PubMed  PubMed Central  Google Scholar 

  57. Simon Y et al (2014) The insulin-like growth factor 2 (IGF2) mRNA-binding protein p62/IGF2BP2-2 as a promoter of NAFLD and HCC? Gut 63(5):861–863

    Article  PubMed  Google Scholar 

  58. Lu M et al (2001) Aberrant expression of fetal RNA-binding protein p62 in liver cancer and liver cirrhosis. Am J Pathol 159(3):945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao Y et al (2020) IGF2BP3 and miR191-5p synergistically increase HCC cell invasiveness by altering ZO-1 expression. Oncol Lett 20(2):1423–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hamilton KE et al (2015) Loss of Stromal IMP1 Promotes a Tumorigenic Microenvironment in the Colon. Mol Cancer Res 13(11):1478–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang F et al (2014) Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J 281(3):802–813

    Article  CAS  PubMed  Google Scholar 

  62. Ye S et al (2016) IGF2BP2 promotes colorectal cancer cell proliferation and survival through interfering with RAF-1 degradation by miR-195. FEBS Lett 590(11):1641–1650

    Article  CAS  PubMed  Google Scholar 

  63. Lin L et al (2013) Insulin-like growth factor-II mRNA-binding protein 3 predicts a poor prognosis for colorectal adenocarcinoma. Oncol Lett 6(3):740–744

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lochhead P et al (2012) Insulin-like growth factor 2 messenger RNA binding protein 3 (IGF2BP3) is a marker of unfavourable prognosis in colorectal cancer. Eur J Cancer 48(18):3405–3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Y et al (2020) Berberine inhibits proliferation and induces G0/G1 phase arrest in colorectal cancer cells by downregulating IGF2BP3. Life Sci 260: 118413

  66. Walter O et al (2009) IMP3 is a novel biomarker for triple negative invasive mammary carcinoma associated with a more aggressive phenotype. Hum Pathol 40(11):1528–1533

    Article  CAS  PubMed  Google Scholar 

  67. Sidoni A, Cartaginese F (2010) IMP3 expression in triple-negative breast carcinoma. Hum Pathol 41(9): 1355–6. author reply 1356–7

  68. Barghash A, Helms V, Kessler SM (2015) Overexpression of IGF2 mRNA-Binding Protein 2 (IMP2/p62) as a Feature of Basal-like Breast Cancer Correlates with Short Survival. Scand J Immunol 82(2):142–143

    Article  CAS  PubMed  Google Scholar 

  69. Li Y, Francia G, Zhang JY (2015) p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer. Oncotarget 6(32):32656–32668

    Article  PubMed  PubMed Central  Google Scholar 

  70. Won JR et al (2013) A survey of immunohistochemical biomarkers for basal-like breast cancer against a gene expression profile gold standard. Mod Pathol 26(11):1438–1450

    Article  CAS  PubMed  Google Scholar 

  71. Vranic S et al (2011) IMP3, a proposed novel basal phenotype marker, is commonly overexpressed in adenoid cystic carcinomas but not in apocrine carcinomas of the breast. Appl Immunohistochem Mol Morphol 19(5):413–416

    Article  CAS  PubMed  Google Scholar 

  72. Wang Z et al (2019) Blockade of miR-3614 maturation by IGF2BP3 increases TRIM25 expression and promotes breast cancer cell proliferation. EBioMedicine 41:357–369

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fakhraldeen SA et al (2015) Two Isoforms of the RNA Binding Protein, Coding Region Determinant-binding Protein (CRD-BP/IGF2BP1), Are Expressed in Breast Epithelium and Support Clonogenic Growth of Breast Tumor Cells. J Biol Chem 290(21):13386–13400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang G et al (2016) IMP1 suppresses breast tumor growth and metastasis through the regulation of its target mRNAs. Oncotarget 7(13):15690–15702

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shi R et al (2017) Expression profile, clinical significance, and biological function of insulin-like growth factor 2 messenger RNA-binding proteins in non-small cell lung cancer. Tumour Biol 39(4):1010428317695928

    Article  PubMed  CAS  Google Scholar 

  76. Kato T et al (2007) Increased expression of insulin-like growth factor-II messenger RNA-binding protein 1 is associated with tumor progression in patients with lung cancer. Clin Cancer Res 13(2 Pt 1):434–442

    Article  CAS  PubMed  Google Scholar 

  77. Zhang J et al (2020) IGF2BP1 silencing inhibits proliferation and induces apoptosis of high glucose-induced non-small cell lung cancer cells by regulating Netrin-1. Arch Biochem Biophys 693: 108581

  78. Zhao W et al (2017) Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) promotes lung tumorigenesis via attenuating p53 stability. Oncotarget 8(55):93672–93687

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen S et al (2018) Relationship between IGF2BP2 and IGFBP3 polymorphisms and susceptibility to non-small-cell lung cancer: a case-control study in Eastern Chinese Han population. Cancer Manag Res 10:2965–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Faye MD et al (2015) IGF2BP1 controls cell death and drug resistance in rhabdomyosarcomas by regulating translation of cIAP1. Oncogene 34(12):1532–1541

    Article  CAS  PubMed  Google Scholar 

  81. Cleynen I et al (2007) HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor-kappaB. Mol Cancer Res 5(4):363–372

    Article  CAS  PubMed  Google Scholar 

  82. Li Z et al (2013) Oncogenic NRAS, required for pathogenesis of embryonic rhabdomyosarcoma, relies upon the HMGA2-IGF2BP2 pathway. Cancer Res 73(10):3041–3050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li KH et al (2009) Expression of IMP3 in osteosarcoma and its clinical significance. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 25(5):426–427

    CAS  PubMed  Google Scholar 

  84. Bell JL et al (2015) IGF2BP1 harbors prognostic significance by gene gain and diverse expression in neuroblastoma. J Clin Oncol 33(11):1285–1293

    Article  CAS  PubMed  Google Scholar 

  85. Mu Q et al (2015) Imp2 regulates GBM progression by activating IGF2/PI3K/Akt pathway. Cancer Biol Ther 16(4):623–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang P et al (2018) MicroRNA-124-3p inhibits cell growth and metastasis in cervical cancer by targeting IGF2BP1. Exp Ther Med 15(2):1385–1393

    CAS  PubMed  Google Scholar 

  87. Su Y et al (2016) MicroRNA-140-5p targets insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) to suppress cervical cancer growth and metastasis. Oncotarget 7(42):68397–68411

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kobel M et al (2007) Expression of the RNA-binding protein IMP1 correlates with poor prognosis in ovarian carcinoma. Oncogene 26(54):7584–7589

    Article  CAS  PubMed  Google Scholar 

  89. Bley N et al (2021) IGF2BP1 is a targetable SRC/MAPK-dependent driver of invasive growth in ovarian cancer. RNA Biol 18(3):391–403

    Article  CAS  PubMed  Google Scholar 

  90. Gu L, Shigemasa K, Ohama K (2004) Increased expression of IGF II mRNA-binding protein 1 mRNA is associated with an advanced clinical stage and poor prognosis in patients with ovarian cancer. Int J Oncol 24(3):671–678

    CAS  PubMed  Google Scholar 

  91. Stohr N et al (2012) IGF2BP1 promotes cell migration by regulating MK5 and PTEN signaling. Genes Dev 26(2):176–189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Liu X et al (2014) Humoral autoimmune responses to insulin-like growth factor II mRNA-binding proteins IMP1 and p62/IMP2 in ovarian cancer. J Immunol Res 2014:326593

  93. Liu H et al (2019) Overexpression of IGF2BP3 as a Potential Oncogene in Ovarian Clear Cell Carcinoma. Front Oncol 9:1570

    Article  PubMed  Google Scholar 

  94. Fortis SP et al (2017) Potential Prognostic Molecular Signatures in a Preclinical Model of Melanoma. Anticancer Res 37(1):143–148

    Article  CAS  PubMed  Google Scholar 

  95. Pryor JG et al (2008) IMP-3 is a novel progression marker in malignant melanoma. Mod Pathol 21(4):431–437

    Article  CAS  PubMed  Google Scholar 

  96. Karras P et al (2019) p62/SQSTM1 Fuels Melanoma Progression by Opposing mRNA Decay of a Selective Set of Pro-metastatic Factors. Cancer Cell 35(1): 46–63 e10

  97. Mahapatra L et al (2019) Protein kinase C-alpha is upregulated by IMP1 in melanoma and is linked to poor survival. Melanoma Res 29(5):539–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ghoshal A et al (2019) Extracellular vesicle-dependent effect of RNA-binding protein IGF2BP1 on melanoma metastasis. Oncogene 38(21):4182–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Elcheva I et al (2008) Overexpression of mRNA-binding protein CRD-BP in malignant melanomas. Oncogene 27(37):5069–5074

    Article  CAS  PubMed  Google Scholar 

  100. Danda R et al (2016) Proteomic profiling of retinoblastoma by high resolution mass spectrometry. Clin Proteomics 13:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Wan Q, Tang J (2019) Exploration of potential key pathways and genes in multiple ocular cancers through bioinformatics analysis. Graefes Arch Clin Exp Ophthalmol 257(10):2329–2341

    Article  CAS  PubMed  Google Scholar 

  102. Glass M, Michl P, Huttelmaier AS (2020) RNA Binding Proteins as Drivers and Therapeutic Target Candidates in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 21(11)

  103. Lin CY et al (2011) Insulin-like growth factor II mRNA-binding protein 3 expression promotes tumor formation and invasion and predicts poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med 40(9):699–705

    Article  CAS  PubMed  Google Scholar 

  104. Li S et al (2011) Insulin-like growth factor II mRNA-binding protein 3: a novel prognostic biomarker for oral squamous cell carcinoma. Head Neck 33(3):368–374

    PubMed  Google Scholar 

  105. Clauditz TS et al (2013) Expression of insulin-like growth factor II mRNA-binding protein 3 in squamous cell carcinomas of the head and neck. J Oral Pathol Med 42(2):125–132

    Article  CAS  PubMed  Google Scholar 

  106. Kim KY et al (2012) Significance of molecular markers in survival prediction of oral squamous cell carcinoma. Head Neck 34(7):929–936

    Article  PubMed  Google Scholar 

  107. Kanzaki A et al (2016) Insulin-like growth factor 2 mRNA-binding protein-3 as a marker for distinguishing between cutaneous squamous cell carcinoma and keratoacanthoma. Int J Oncol 48(3):1007–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim T et al (2017) RNA-Binding Protein IGF2BP1 in Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 137(3):772–775

    Article  CAS  PubMed  Google Scholar 

  109. Jiang Y et al (2021) LINC01426 contributes to clear cell renal cell carcinoma progression by modulating CTBP1/miR-423-5p/FOXM1 axis via interacting with IGF2BP1. J Cell Physiol 236(1):427–439

    Article  CAS  PubMed  Google Scholar 

  110. Tschirdewahn S et al (2019) Circulating and tissue IMP3 levels are correlated with poor survival in renal cell carcinoma. Int J Cancer 145(2):531–539

    Article  CAS  PubMed  Google Scholar 

  111. Haase J et al (2021) IGF2BP1 is the first positive marker for anaplastic thyroid carcinoma diagnosis. Mod Pathol 34(1):32–41

    Article  CAS  PubMed  Google Scholar 

  112. Asioli S et al (2010) Poorly differentiated carcinoma of the thyroid: validation of the Turin proposal and analysis of IMP3 expression. Mod Pathol 23(9):1269–1278

    Article  PubMed  Google Scholar 

  113. Zhou AG et al (2013) Clinical implications of current developments in genitourinary pathology. Arch Pathol Lab Med 137(7):887–893

    Article  PubMed  Google Scholar 

  114. Sitnikova L et al (2008) IMP3 predicts aggressive superficial urothelial carcinoma of the bladder. Clin Cancer Res 14(6):1701–1706

    Article  CAS  PubMed  Google Scholar 

  115. Lee DJ et al (2014) Insulin-like growth factor messenger RNA-binding protein 3 expression helps prognostication in patients with upper tract urothelial carcinoma. Eur Urol 66(2):379–385

    Article  CAS  PubMed  Google Scholar 

  116. Goodman S et al (2014) Differential expression of IMP3 between male and female mature teratomas–immunohistochemical evidence of malignant nature. Histopathology 65(4):483–489

    Article  PubMed  Google Scholar 

  117. Tang H et al (2013) IMP3 as a supplemental diagnostic marker for Hodgkin lymphoma. Hum Pathol 44(10):2167–2172

    Article  CAS  PubMed  Google Scholar 

  118. King RL et al (2009) IMP-3 is differentially expressed in normal and neoplastic lymphoid tissue. Hum Pathol 40(12):1699–1705

    Article  CAS  PubMed  Google Scholar 

  119. Hartmann EM et al (2012) Increased tumor cell proliferation in mantle cell lymphoma is associated with elevated insulin-like growth factor 2 mRNA-binding protein 3 expression. Mod Pathol 25(9):1227–1235

    Article  CAS  PubMed  Google Scholar 

  120. Sennekamp J, Seelig HP (2016) Anti-cytoplasmic Autoantibodies in Hodgkin’s Lymphoma. Clin Lab 62(8):1579–1584

    PubMed  Google Scholar 

  121. Mahapatra L et al (2017) A Novel IMP1 Inhibitor, BTYNB, Targets c-Myc and Inhibits Melanoma and Ovarian Cancer Cell Proliferation. Transl Oncol 10(5):818–827

    Article  PubMed  PubMed Central  Google Scholar 

  122. Liu Z et al (2018) IGF2BP1 over-expression in skin squamous cell carcinoma cells is essential for cell growth. Biochem Biophys Res Commun 501(3):731–738

    Article  CAS  PubMed  Google Scholar 

  123. Boyerinas B et al (2012) Let-7 modulates acquired resistance of ovarian cancer to Taxanes via IMP-1-mediated stabilization of multidrug resistance 1. Int J Cancer 130(8):1787–1797

    Article  CAS  PubMed  Google Scholar 

  124. Stohr N, Huttelmaier S (2012) IGF2BP1: a post-transcriptional “driver” of tumor cell migration. Cell Adh Migr 6(4):312–318

    Article  PubMed  PubMed Central  Google Scholar 

  125. Elcheva I et al (2009) CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol Cell 35(2):240–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Huang Q et al (2020) A novel circular RNA, circXPO1, promotes lung adenocarcinoma progression by interacting with IGF2BP1. Cell Death Dis 11(12):1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yaqoob A et al (2020) Grifolin, neogrifolin and confluentin from the terricolous polypore Albatrellus flettii suppress KRAS expression in human colon cancer cells. PLoS One15(5): e0231948

  128. Mongroo PS et al (2011) IMP-1 displays cross-talk with K-Ras and modulates colon cancer cell survival through the novel proapoptotic protein CYFIP2. Cancer Res 71(6):2172–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ioannidis P et al (2003) CRD-BP: a c-Myc mRNA stabilizing protein with an oncofetal pattern of expression. Anticancer Res 23(3A):2179–2183

    CAS  PubMed  Google Scholar 

  130. He J et al (2019) A novel, liver-specific long noncoding RNA LINC01093 suppresses HCC progression by interaction with IGF2BP1 to facilitate decay of GLI1 mRNA. Cancer Lett 450:98–109

    Article  CAS  PubMed  Google Scholar 

  131. Hsieh YT et al (2013) IMP1 promotes choriocarcinoma cell migration and invasion through the novel effectors RSK2 and PPME1. Gynecol Oncol 131(1):182–190

    Article  CAS  PubMed  Google Scholar 

  132. Carmel MS et al (2015) A Novel Role for VICKZ Proteins in Maintaining Epithelial Integrity during Embryogenesis. PLoS One 10(8): e0136408

  133. Gu W et al (2012) Regulation of local expression of cell adhesion and motility-related mRNAs in breast cancer cells by IMP1/ZBP1. J Cell Sci 125(Pt 1):81–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moschner K et al (2014) RNA protein granules modulate tau isoform expression and induce neuronal sprouting. J Biol Chem 289(24):16814–16825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gutschner T et al (2014) Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology 59(5):1900–1911

    Article  CAS  PubMed  Google Scholar 

  136. Zhang L et al (2021) IGF2BP1 overexpression stabilizes PEG10 mRNA in an m6A-dependent manner and promotes endometrial cancer progression. Theranostics 11(3):1100–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zirkel A et al (2013) IGF2BP1 promotes mesenchymal cell properties and migration of tumor-derived cells by enhancing the expression of LEF1 and SNAI2 (SLUG). Nucleic Acids Res 41(13):6618–6636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Manieri NA et al (2012) Igf2bp1 is required for full induction of Ptgs2 mRNA in colonic mesenchymal stem cells in mice. Gastroenterology 143(1): 110–21 e10

  139. Zhou Y et al (2018) IMP1 regulates UCA1-mediated cell invasion through facilitating UCA1 decay and decreasing the sponge effect of UCA1 for miR-122-5p. Breast Cancer Res 20(1):32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Gao T et al (2020) Long non-coding RNA 91H regulates IGF2 expression by interacting with IGF2BP2 and promotes tumorigenesis in colorectal cancer. Artif Cells Nanomed Biotechnol 48(1):664–671

    Article  CAS  PubMed  Google Scholar 

  141. Boudoukha S et al (2014) MiRNA let-7g regulates skeletal myoblast motility via Pinch-2. FEBS Lett 588(9):1623–1629

    Article  CAS  PubMed  Google Scholar 

  142. Hou P et al (2021) LINC00460/DHX9/IGF2BP2 complex promotes colorectal cancer proliferation and metastasis by mediating HMGA1 mRNA stability depending on m6A modification. J Exp Clin Cancer Res 40(1):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pu J et al (2020) IGF2BP2 Promotes Liver Cancer Growth Through an m6A-FEN1-Dependent Mechanism. Front Oncol 10: 578816

  144. Jing F et al (2020) Long noncoding RNA Airn protects podocytes from diabetic nephropathy lesions via binding to Igf2bp2 and facilitating translation of Igf2 and Lamb2. Cell Biol Int 44(9):1860–1869

    Article  CAS  PubMed  Google Scholar 

  145. Hu X et al (2020) IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader. Cell Death Differ 27(6):1782–1794

    Article  CAS  PubMed  Google Scholar 

  146. Liu Y et al (2017) CD44(+) fibroblasts increases breast cancer cell survival and drug resistance via IGF2BP3-CD44-IGF2 signalling. J Cell Mol Med 21(9):1979–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schaeffer DF et al (2010) Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) overexpression in pancreatic ductal adenocarcinoma correlates with poor survival. BMC Cancer 10:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Liao B et al (2005) The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol Chem 280(18):18517–18524

    Article  CAS  PubMed  Google Scholar 

  149. Palanichamy JK et al (2016) RNA-binding protein IGF2BP3 targeting of oncogenic transcripts promotes hematopoietic progenitor proliferation. J Clin Invest 126(4):1495–1511

    Article  PubMed  PubMed Central  Google Scholar 

  150. Mancarella C et al (2020) Insulin-Like Growth Factor 2 mRNA-Binding Protein 3 Modulates Aggressiveness of Ewing Sarcoma by Regulating the CD164-CXCR4 Axis. Front Oncol 10:994

    Article  PubMed  PubMed Central  Google Scholar 

  151. Samanta S et al (2012) Regulation of IMP3 by EGFR signaling and repression by ERbeta: implications for triple-negative breast cancer. Oncogene 31(44):4689–4697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Fawzy IO et al (2016) Abrogating the interplay between IGF2BP1, 2 and 3 and IGF1R by let-7i arrests hepatocellular carcinoma growth. Growth Factors 34(1–2):42–50

    Article  CAS  PubMed  Google Scholar 

  153. Li W et al (2014) Role of IGF2BP3 in trophoblast cell invasion and migration. Cell Death Dis 5: e1025

  154. Jia C et al (2020) Ubiquitination of IGF2BP3 by E3 ligase MKRN2 regulates the proliferation and migration of human neuroblastoma SHSY5Y cells. Biochem Biophys Res Commun 529(1):43–50

    Article  CAS  PubMed  Google Scholar 

  155. Sheen YS et al (2015) IMP-3 promotes migration and invasion of melanoma cells by modulating the expression of HMGA2 and predicts poor prognosis in melanoma. J Invest Dermatol 135(4):1065–1073

    Article  CAS  PubMed  Google Scholar 

  156. Rivera Vargas T et al (2014) Post-transcriptional regulation of cyclins D1, D3 and G1 and proliferation of human cancer cells depend on IMP-3 nuclear localization. Oncogene 33(22):2866–2875

    Article  CAS  PubMed  Google Scholar 

  157. Bao G et al (2020) Long noncoding RNA CERS6-AS1 functions as a malignancy promoter in breast cancer by binding to IGF2BP3 to enhance the stability of CERS6 mRNA. Cancer Med 9(1):278–289

    Article  CAS  PubMed  Google Scholar 

  158. Jiang W et al (2020) LINC00467 promotes cell proliferation and metastasis by binding with IGF2BP3 to enhance the mRNA stability of TRAF5 in hepatocellular carcinoma. J Gene Med 22(3): e3134

  159. Mizutani R et al (2016) Oncofetal protein IGF2BP3 facilitates the activity of proto-oncogene protein eIF4E through the destabilization of EIF4E-BP2 mRNA. Oncogene 35(27):3495–3502

    Article  CAS  PubMed  Google Scholar 

  160. Taniuchi K et al (2014) IGF2BP3-mediated translation in cell protrusions promotes cell invasiveness and metastasis of pancreatic cancer. Oncotarget 5(16):6832–6845

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ko CY et al (2016) IL-18-induced interaction between IMP3 and HuR contributes to COX-2 mRNA stabilization in acute myeloid leukemia. J Leukoc Biol 99(1):131–141

    Article  CAS  PubMed  Google Scholar 

  162. Su P et al (2014) IMP3 expression is associated with epithelial-mesenchymal transition in breast cancer. Int J Clin Exp Pathol 7(6):3008–3017

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Schmiedel D et al (2016) The RNA binding protein IMP3 facilitates tumor immune escape by downregulating the stress-induced ligands ULPB2 and MICB. Elife 5

  164. Samanta S, Pursell B, Mercurio AM (2013) IMP3 protein promotes chemoresistance in breast cancer cells by regulating breast cancer resistance protein (ABCG2) expression. J Biol Chem 288(18):12569–12573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81872080), Jiangsu Provincial Medical Talent (ZDRCA2016055), the Science and Technology Department of Jiangsu Province (BK20181148), the Priority Academy Program Development of Jiangsu Higher Education Institutions (PAPD) and the 333 high-level talents of Jiangsu Province (BRA2019083).

Author information

Authors and Affiliations

Authors

Contributions

QYD and ZMZ wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dong-Sheng Pei.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, QY., Zhu, ZM. & Pei, DS. The biological function of IGF2BPs and their role in tumorigenesis. Invest New Drugs 39, 1682–1693 (2021). https://doi.org/10.1007/s10637-021-01148-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-021-01148-9

Keywords

Navigation