Skip to main content
Log in

Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

It is vital to address potential risks to aquatic ecosystems exposed to runoff and leachates from biochar-amended soils, before large scale applications can be considered. So far, there are no established approaches for such an assessment. This study used a battery of bioassays and representative aquatic organisms for assessing the acute toxicity of water-extractable fractions of biochar-amended soil, at reported application rates (80 t ha−1). Biochar-amended aqueous soil extracts contained cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), lead (Pb), arsenic (As) and mercury (Hg) (Σmetals 96.3 µg l−1) as well as the 16 priority PAHs defined by the U.S. Environmental Protection Agency (Σ16PAHs 106 ng l−1) at contents in the range of current EU regulations for surface waters. Nevertheless, acute exposure to soil-biochar (SB) extracts resulted in species-specific effects and dose–response patterns. While the bioluminescent marine bacterium Vibrio fischeri was the most sensitive organism to aqueous SB extracts, there were no effects on the growth of the microalgae Pseudokirchneriella subcapitata. In contrast, up to 20 and 25 % mobility impairment was obtained for the invertebrate Daphnia magna upon exposure to 50 and 100 % SB extract concentrations (respectively). Results suggest that a battery of rapid and cost-effective aquatic bioassays that account for ecological representation can complement analytical characterization of biochar-amended soils and risk assessment approaches for surface and groundwater protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmad M, Lee SS, Yang JE, Rob HM, Lee YH, Yong SO (2012) Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotox Environ Safe 79(1):225–231

    Article  CAS  Google Scholar 

  • Antal MJ Jr, Grönli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640

    Article  CAS  Google Scholar 

  • ASTM (1998) Standard practice for conducting toxicity tests with fish, microinvertebrates and amphibians, ASTM E729-90. In: Annual Book for ASTM Standards, American Society for Testing Materials. Philadelphia

  • Awad YM, Blagodatskaya E, Ok YS, Kuzyakov Y (2013) Effects of polyacrylamide, biopolymer and biochar on the decomposition of 14C-labelled maize residues and on their stabilization in soil aggregates. Eur J Soil Sci 64(4):488–499

    Article  CAS  Google Scholar 

  • Baird DJ, Soares AMVM, Girling A, Barber I, Bradley MC, Calow P (1989) The long-term maintenance of Daphnia magna (Straus) for use in ecotoxicity tests: problems and prospects. In: Lokke H, Tyle H, Bro-Rasmussen F (eds) Proceedings of the First European Conference on Ecotoxicology. Lyngby, Denmark

    Google Scholar 

  • Bastos AC, Prodana M., Oliveira JM, Calhôa CF, Santos MJG, Soares AMVM, Loureiro S (2014) Water-extractable priority contaminants in LUFA 2.2 soil: back to basics, contextualisation and implications for use as natural standard soil. Ecotoxicology. doi:10.1007/s10646-014-1335-2

  • Beesley L, Dickinson N (2011) Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol Biochem 43(1):188–196

    Article  CAS  Google Scholar 

  • Bellas J, Saco-Álvarez L, Nieto O, Beiras R (2008) Ecotoxicological evaluation of polycyclic aromatic hydrocarbons using marine invertebrate embryo-larval bioassays. Mar Pollut Bull 57:493–502

    Article  CAS  Google Scholar 

  • Berglind R, Leffler P, Sjöström M (2010) Interactions between pH, potassium, calcium, bromide, and phenol and their effects on the bioluminescence of Vibrio fischeri. J Toxicol Environ Health A 73:1102–1112

    Article  CAS  Google Scholar 

  • Bierkens J, Klein G, Corbisier P, Heuvel R, Verschaeve L, Weltens R et al (1998) Comparative sensitivity of 20 bioassays for soil quality. Chemosphere 37:2935–2947

    Article  CAS  Google Scholar 

  • Busch D, Kammann C, Grünhage L, Müller C (2012) Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures. J Environ Qual 41(4):1023–1032

    Article  CAS  Google Scholar 

  • Campisi T, Abbondanzi F, Casado-Martinez C, DelValls TA, Guerra R, Iacondini A (2005) Effect of sediment turbidity and color on light output measurement for microtox basic solid-phase Test. Chemosphere 60:9–15

    Article  CAS  Google Scholar 

  • Campos I, Abrantes N, Vidal T, Bastos AC, Gonçalves F, Keizer JJ (2012) Assessment of the toxicity of ash-loaded runoff from a recently burnt eucalypt plantation. Eur J Forest Res 131(6):1889–1903

    Article  Google Scholar 

  • Chen B, Yuan M (2011) Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soils Sediments 11:62–71

    Article  Google Scholar 

  • Chen M, Ma LQ, Hoogeweg CG, Harris WG (2001) Arsenic background concentrations in Florida, USA surface soils: determination and interpretation. Environ Forensics 2:117–126

    Article  CAS  Google Scholar 

  • Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90:543–556

    Article  CAS  Google Scholar 

  • DECHEMA (1995) Bioassays for Soils. DECHEMA, Deutsche Gesellschaft für Chemisches Apparatewesen, Chemische Technik und Biotechnologie e. V. Frankfurt am Main

  • Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrol 72(2):243–248

    Article  CAS  Google Scholar 

  • Doherty FG (2001) A review of the Microtox toxicity test system for assessing the toxicity of sediments and soils. Water Qual Res J Can 36:475–518

    CAS  Google Scholar 

  • Domene X, Mattana S, Hanley K, Enders A, Lehmann J (2014) Medium-term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biol Biochem 72:152–162

    Article  CAS  Google Scholar 

  • Eisentraeger A, Rila JP, Hund-Rinke K, Roembke J (2004) Proposal of a testing strategy and assessment criteria for the ecotoxicological assessment of soil or soil materials. J Soil Sediment 4(2):123–128

    Article  CAS  Google Scholar 

  • Elad Y, Cytryn E, Meller HY, Lew B, Graber ER (2012) The biochar effect: plant resistance to biotic stresses. Phytopathol Mediterr 50(3):335–349

    Google Scholar 

  • Eom IC, Rast C, Veber AM, Vasseur P (2007) Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotox Environ Safe 67(2):190–205

    Article  CAS  Google Scholar 

  • Fabbri D, Rombolà AG, Torri C, Spokas KA (2013) Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil. J Anal Appl Pyrol 103:60–67

    Article  CAS  Google Scholar 

  • Fellet G, Marmiroli M, Marchiol L (2014) Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci Total Environ 468–469:598–608

    Article  Google Scholar 

  • Freddo A, Cai C, Reid BJ (2012) Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environ Pollut 171:18–24

    Article  CAS  Google Scholar 

  • Frische T (2002) Screening for soil toxicity and mutagenicity using luminescent bacteria—a case study of the explosive 2,4,6-trinitrotoluene (TNT). Ecotoxicol Environ Saf 51(2):133–144

    Article  CAS  Google Scholar 

  • Geis SW, Fleming KL, Korthals ET, Searle G, Reynolds L, Karner DA (2000) Modifications to the algal growth inhibition test for use as a regulatory assay. Environ Toxicol Chem 19(1):36–41

    Article  CAS  Google Scholar 

  • Glaser B, Parr M, Braun C, Kopolo G (2009) Biochar is carbon negative. Nat Geosci 2(1):2

    Article  CAS  Google Scholar 

  • Gomez-Eyles JL, Sizmur T, Collins CD, Hodson ME (2011) Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ Pollut 159(2):616–622

    Article  CAS  Google Scholar 

  • Gonçalves SF, Calado R, Gomes NCM, Soares AMVM, Loureiro S (2013) An ecotoxicological analysis of the sediment quality in a European Atlantic harbor emphasizes the current limitations of the Water Framework Directive. Mar Pollut Bull 72(1):197–204

    Article  Google Scholar 

  • Graber ER, Tsechanskya L, Lew B, Cohen E (2014) Reducing capacity of water extracts of biochars and their solubilization of soil Mn and Fe. Eur J Soil Sci 65:162–172

    Article  CAS  Google Scholar 

  • Hale SE, Lehmann J, Rutherford D, Zimmerman AR, Bachmann RT, Shitumbanuma V et al (2012) Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ Sci Technol 46:2830–2838

    Article  CAS  Google Scholar 

  • Hilber I, Blum F, Leifeld J, Schmidt H-P, Bucheli TD (2012) Quantitative determination of PAHs in biochar: a prerequisite to ensure its quality and safe application. J Agric Food Chem 60(12):3042–3050

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Kördel W (2003) Underlying issues in bioaccessibility and bioavailability: experimental methods. Ecotoxicol Environ Saf 56(1):52–62

    Article  CAS  Google Scholar 

  • Hund-Rinke KH, Kördel W, Hennecke D, Eisentraeger A, Heiden S (2002) Bioassays for the ecotoxicological and genotoxicological assessment of contaminated soils (Results of a Round Robin Test): Part I. Assessment of a possible groundwater contamination: ecotoxicological and genotoxicological tests with aqueous soil extracts. J Soil Sediment 2:43–50

    Article  CAS  Google Scholar 

  • ISO/DIS 15799 (2003) Soil Quality—Guidance on the ecotoxicological characterization of soils and soil materials. International Organization for Standardization, Geneva, Switzerland

  • ISO/DIS 17402 (2008) Soil quality—Requirements and guidance for the selection and application of methods for the assessment of bioavailability of contaminants in soil and soil materials. International Organization for Standardization, Geneva, Switzerland

  • Jaffé R, Ding Y, Niggemann J, Vähätalo AV, Stubbins A, Spencer RGM et al (2013) Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340:345–347

    Article  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187

    Article  Google Scholar 

  • Jeffery S, Bezemer TM, Cornelissen J, Kuyper TW, Lehmann J, Mommerk L, Sohi S, van de Voordek TFJ, Wardle DA, van Groenigen JW (2013) The way forward in biochar research: targeting trade-offs between the potential wins. GCB Bioenergy. doi:10.1111/gcbb.12132

  • Jonker MTO, Hawthorne SB, Koelmans AA (2005) Extremely slowly desorbing polycyclic aromatic hydrocarbons from soot and soot-like materials: evidence by supercritical fluid extraction. Environ Sci Technol 39:7889–7895

    Article  CAS  Google Scholar 

  • Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31(1):214–217

    Article  CAS  Google Scholar 

  • Khan S, Wang N, Reid BJ, Freddo A, Cai C (2013) Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environ Pollut 175:64–68

    Article  CAS  Google Scholar 

  • Lampi MA, Gurska J, McDonald KIC (2006) Photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna: ultraviolet-mediated effects and the toxicity of polycyclic aromatic hydrocarbon photoproducts. Environ Toxicol Chem 25:1079–1087

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for Environmental Management: Science and Technology. Earthscan, London

    Google Scholar 

  • Li LZ, Zhou DM, Wang P, Jin SY, Peijnenburg WJGM, Reinecke AJ, van Gestel CAM (2009) Effect of cation competition on cadmium uptake from solution by the earthworm Eisenia fetida. Environ Toxicol Chem 28(8):1732–1738

    Article  CAS  Google Scholar 

  • Li D, Hockaday WC, Masiello CA, Alvarez PJJ (2011) Earthworm avoidance of biochar can be mitigated by wetting. Soil Biol Biochem 43(8):1732–1737

    Article  CAS  Google Scholar 

  • Loibner AP, Szolar OHJ, Braun R, Hirmann D (2004) Toxicity testing of 16 priority polycyclic aromatic hydrocarbons using Lumistox®. Environ Toxicol Chem 23(3):557–564

    Article  CAS  Google Scholar 

  • Loureiro S, Ferreira ALG, Soares AMVM, Nogueira AJA (2005) Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere 61:168–177

    Article  CAS  Google Scholar 

  • Luo F, Song J, Xia W, Dong M, Chen C, Soudek P (2014) Characterization of contaminants and evaluation of the suitability for land application of maize and sludge biochars. Environ Sci Pollut Res 21:8707–8717

    Article  CAS  Google Scholar 

  • Marks EA, Mattana S, Alcañiz JM, Domene X (2014a) Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays. Eur J Soil Biol 60:104–111

    Article  CAS  Google Scholar 

  • Marks EA, Alcañiz JM, Domene X (2014b) Unintended effects of biochars on short-term plant growth in a calcareous soil. Plant Soil. doi:10.1007/s11104-014-2198-2

  • Maxam G, Rila JP, Dott W, Eisentraeger A (2000) Use of bioassays for assessment of water-extractable ecotoxic potential of soils. Ecotoxicol Environ Safe 45:240–246

    Article  CAS  Google Scholar 

  • Microbics Corporation (1992) Microtox® Manual. A toxicity testing handbook. Microbics Corporation, Carlsbad

    Google Scholar 

  • Neff JM (1979) Polycyclic aromatic hydrocarbons in the marine environment: sources, fate and biological effects. Applied Science Publishers, London

    Google Scholar 

  • Oleszczuk P, Jośko I, Kuśmierz M (2013) Biochar properties regarding to contaminants content and ecotoxicological assessment. J Hazard Mater 260:375–382

    Article  CAS  Google Scholar 

  • Olmstead AW, LeBlanc GA (2005) Joint action of polycyclic aromatic hydrocarbons: predictive modelling of sub-lethal toxicity. Aquat Toxicol 75(3):253–262

    Article  CAS  Google Scholar 

  • Organisation for Economic Co-operation and Development (2004) OECD guidelines for testing of chemicals. Guideline 202: Daphnia sp., acute immobilization test. OECD, Paris

  • Organisation for Economic Co-operation and Development (2006) OECD guidelines for testing of chemicals. Guideline 201: freshwater alga and cyanobacteria, growth inhibition test. OECD, Paris

  • Prendergast-Miller MT, Duvall M, Sohi SP (2014) Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur J Soil Sci 65(1):173–185

    Article  CAS  Google Scholar 

  • Rees F, Simonnot MO, Morel JL (2014) Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur J Soil Sci 65(1):149–161

    Article  CAS  Google Scholar 

  • Rendal C, Trapp S, Kusk KO (2012) Critical evaluation and further development of methods for testing ecotoxicity at multiple pH using Daphnia magna and Pseudokirchneriella subcapitata. Environ Toxicol Chem 31(8):1843–1852

    Article  CAS  Google Scholar 

  • Rocha L, Rodrigues SM, Lopes I, Soares AMVM, Duarte AC, Pereira E (2011) The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity. Chemosphere 84(10):1495–1505

    Article  CAS  Google Scholar 

  • Schäfer RB, Hearn L, Kefford BJ, Mueller JF, Nugegoda D (2010) Using silicone passive samplers to detect polycyclic aromatic hydrocarbons from wildfires in streams and potential acute effects for invertebrate communities. Water Res 22:4590–4600

    Article  Google Scholar 

  • Sheehan P, Dewhurst RE, James S, Callaghan A, Connon R, Crane M (2003) Is there a relationship between soil and groundwater toxicity? Environ Geochem Health 25:9–16

    Article  CAS  Google Scholar 

  • Sijm D, Kraaij R, Belfroid A (2000) Bioavailability in soil and sediment: exposure of different organisms and approaches to study it. Environ Pollut 108:113–119

    Article  CAS  Google Scholar 

  • Sijm DTHM, Rikken MGJ, Rorije E, Traas TP, Mclachlan MS, Peijnenburg WJGM (2007) Transport, accumulation and transformation processes. In: van Leeuwen CJ, Vermeire TG (eds) Risk assessment of chemicals: an introduction, 2nd edn. Springer, NL, pp 73–158

    Chapter  Google Scholar 

  • Smith CR, Buzan EN, Lee JW (2013) Potential impact of biochar water-extractable substances on environmental sustainability. ACS Sustain Chem Eng 1:118–126

    CAS  Google Scholar 

  • Stein JR (1973) Handbook of phycological methods: culture methods and growth measurements. University Press, London

    Google Scholar 

  • Suter GW II, Tsao CL (1996) Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 Revision. US Department of Energy, Oak Ridge

    Google Scholar 

  • Tammeorg P, Parviainen T, Nuutinen V, Simojoki A, Vaara E, Helenius J (2014) Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal loamy sand. Agric Ecosyst Environ 191(15):150–157

    Article  CAS  Google Scholar 

  • Uchimiya M, Lima IM, Klasson KT, Wartelle LH (2010) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80(8):935–940

    Article  CAS  Google Scholar 

  • van Gestel CAM (2008) Physico-chemical and biological parameters determine metal bioavailability in soils. Sci Total Environ 406(3):385–395

    Article  Google Scholar 

  • van Gestel CAM, Koolhaas JE (2004) Water-extractability, free ion activity, and Ph explain cadmium sorption and toxicity to Folsomia candida (collembola) in seven soil–pH combinations. Environ Toxicol Chem 23(8):1822–1833

    Article  Google Scholar 

  • van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J et al (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1):235–246

    Article  Google Scholar 

  • Verheijen FGA, Jeffery S, Bastos AC, van der Velde M, Diafas I (2010) Biochar application to soils—a critical scientific review of effects on soil properties, processes and functions. EUR 24099 EN. Office for the Official Publications of the European Communities, Luxembourg

  • Xie FL, Koziar SA, Lampi MA, Dixon DG, Norwood WP, Borgmann U et al (2006) Assessment of the toxicity of mixtures of copper, 9,10-phenanthrenequinone, and phenanthrene to Daphnia magna: evidence for a reactive oxygen mechanism. Environ Toxicol Chem 25(2):613–622

    Article  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical Analysis, 4th edn. Prentice-Hall International Inc, New Jersey

    Google Scholar 

  • Zhao FJ, McGrath SP, Merrington G (2007) Estimates of ambient background concentrations of trace metals in soils for risk assessment. Environ Pollut 148:221–229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by European Funds through COMPETE and National Funds through the Portuguese Science Foundation (FCT), within Projects PEst-C/MAR/LA0017/2013, FUTRICA—Chemical Flow in an Aquatic TRophic Chain (FCOMP-01-0124-FEDER-008600; Ref. FCT PTDC/AAC-AMB/104666/2008), which included a Postdoctoral Grant to Ana Catarina Bastos, as well as the FCT-funded Postdoctoral fellowship of Nelson Abrantes (SFRH/BPD/35665/2007). The authors further wish to acknowledge the European Commission through the Erasmus Mundus Program, for the Masters scholarship of Marija Prodana. Amadeu M.V.M. Soares is ‘Bolsista CAPES/BRASIL’, Project No. A058/2013.

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical standards

Authors declare that the experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Bastos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastos, A.C., Prodana, M., Abrantes, N. et al. Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays. Ecotoxicology 23, 1784–1793 (2014). https://doi.org/10.1007/s10646-014-1344-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1344-1

Keywords

Navigation