Skip to main content
Log in

Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In the present study the response of antioxidant enzyme activities and the level of expression of their corresponding genes on bioaccumulation of iron (Fe) were investigated. In vitro germinated Withania somnifera L. were grown in Murashige and Skoog’s liquid medium with increasing concentrations (0, 25, 50, 100 and 200 µM) of FeSO4 for 7 and 14 days. Root and leaf tissues analyzed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (GPX, EC 1.11.1.7), have shown an increase in content with respect to exposure time. Isoforms of CAT, SOD and GPX were separated using non-denaturing polyacrylamide gel electrophoresis and observed that the isoenzymes were greatly affected by higher concentrations of Fe. Reverse transcriptase polymerase chain reaction analysis performed by taking three pairs of genes of CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) to find out the differential expression of antioxidant genes under Fe excess. RsCat from CAT and MnSOD from SOD have exhibited high levels of gene expression under Fe stress, which was consistent with the changes of the activity assayed in solution after 7 days of treatment. Analysis by proton induced X-ray emission exhibited an increasing uptake of Fe in plants by suppressing and expressing of other nutrient elements. The results of the present study suggest that higher concentration of Fe causes disturbance in nutrient balance and induces oxidative stress in plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi HE (1983) Catalase. In: Bergmeyer H (ed) Method of enzymatic analysis. Chemie, Weinheim, pp 273–277

    Google Scholar 

  • Alloush GA, Clark RB (2001) Maize response to phosphate rock and arbuscular mycorrhizal fungi in acidic soil. Commun Soil Sci Plant Anal 32(1–2):231–254. doi:10.1081/CSS-100103004

    Article  CAS  Google Scholar 

  • Appenroth KJ (2010) What are “heavy metals” in plant science. Acta Physiol Plant 32:615–619. doi:10.1007/s11738-009-0455-4

    Article  CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85:235–241. doi:10.1111/j.1399-3054.1992.tb04728.x

    Article  CAS  Google Scholar 

  • Ashraf MY, Azhar N, Ashraf M, Hussain M, Arshad M (2011) Influence of lead on growth and nutrient accumulation in canola (Brassica napus L.) cultivars. J Environ Biol 32:659–666

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay applicable to acrylamide gels. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8

    Article  CAS  Google Scholar 

  • Bergmeyer HU (1974) Methods of enzymatic analysis, 2nd edn. Academic Press, New york

    Google Scholar 

  • Bernhard R, Verkleij JAC, Nelissen HJM, Vink JPM (2005) Plant specific responses to zinc contamination in a semi-field lysimeter and on hydroponics. Environ Pollut 138:100–108. doi:10.1016/j.envpol.2005.02.015

    Article  CAS  Google Scholar 

  • Chongpraditnum P, Mori S, Chino M (1992) Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant Cell Physiol 33:239–244

    Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23(7):867–902. doi:10.1080/01904160009382068

    Article  CAS  Google Scholar 

  • Cui Y, Wang Q (2006) Physiological responses of maize to elemental sulphur and cadmium stress. Plant Soil Environ 11:523–529

    Google Scholar 

  • Das K, Samanta L, Chainy GBN (2000) A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian J Biochem Biophys 37:201–204

    CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York

    Google Scholar 

  • Hamill DE, Brewbaker JL (1969) Isoenzyme polymorphism in flowering plants. IV. The peroxidase isoenzymes of maize (Zea mays L.). Physiol Plant 22:945–958. doi:10.1111/j.1399-3054.1969.tb07453.x

    Article  CAS  Google Scholar 

  • Israr M, Jewell A, Kumar D, Sahi SV (2011) Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J Hazard Mater 186:1520–1526. doi:10.1016/j.jhazmat.2010.12.021

    Article  CAS  Google Scholar 

  • Jiang L, Zhang D, Shao Y, Yang S, Li T, Zhang Z, Li C (2012) Real-time quantitative PCR monitoring of antioxidant enzyme gene expression in wheat radicles treated with Cu2+ and Cd2+. Life Sci J 9:1679–1685

    Google Scholar 

  • Khatun S, Ali MB, Hahn E, Paek K (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro plants. Environ Exp Bot 64:279–285. doi:10.1016/j.envexpbot.2008.02.004

    Article  CAS  Google Scholar 

  • Kwon SI, Lee H, An CS (2007) Differential expression of three catalase genes in the small radish (Rhphanus sativus L. var. sativus). Mol Cells 24:37–44

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  Google Scholar 

  • Li X, Ma H, Jia P, Wang J, Jia L, Zhang T, Yang Y, Chen H, Wei X (2012) Responses of seedling growth and antioxidant activity to excess iron and copper in Triticum aestivum L. Ecotoxicol Environ Saf 86:47–53. doi:10.1016/j.ecoenv.2012.09.010

    Article  CAS  Google Scholar 

  • Liu Z, Chen W, He X (2011) Cadmium-induced changes in growth and antioxidative mechanisms of a medicine plant (Lonicera japonica Thunb.). J Med Plants Res 5:1411–1417

    CAS  Google Scholar 

  • Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802. doi:10.1016/j.plantsci.2004.10.012

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Ma C, Wang PP, Cao ZY, Zhao YX, Zhang H (2003) Cloning and differential gene expression of two catalases in Suaeda salsa in response to salt stress. Acta Bot Sin 45:93–97

    CAS  Google Scholar 

  • Mehraban P, Abdolzadeh A (2012) Effects of iron excess on the antioxidant activity and patterns of protein electrophoresis in Oryza sativa var. Shafagh. J Plant Prod 19:85–106

    Google Scholar 

  • Mehraban P, Zadeh AA, Sadeghipour HR (2008) Iron toxicity in rice (Oryza sativa L.), under different potassium nutrition. Asian J Plant Sci 7:251–259. doi:10.3923/ajps.2008.251.259

    Article  CAS  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-glutathione peroxidase, catalase and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248. doi:10.1016/0891-5849(94)90079-5

    Article  CAS  Google Scholar 

  • Mulware SJ (2013) Comparative trace elemental analysis in cancerous and nanocancerous humam tissues using PIXE. J Biophy 2013:1–8. doi:10.1155/2013/192026

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Naz S, Pandey B, Shrivastava AK (2012) Significance of antioxidant enzymes in stress signaling in Withania sominifera (L.) Dunal. Int J Res BioSci 1:42–48

    Google Scholar 

  • Oliva SR, Mingorance MD, Valdes B, Leidi EO (2010) Uptake, localization and physiological changes in response to copper excess in Erica andevalensis. Plant Soil 328:411–420. doi:10.1007/s11104-009-0121-z

    Article  Google Scholar 

  • Panda SK, Matsumoto H (2010) Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress. Biometals 23:753–762. doi:10.1007/s10534-010-9342-0

    Article  CAS  Google Scholar 

  • Pedler JF, Kinraide TB, Parker DR (2004) Zn rhizotoxicity in wheat and radish is alleviated by micro molar levels of magnesium and potassium in solution culture. Plant Soil 259:191–199. doi:10.1023/B:PLSO.0000020958.42158.f5

    Article  CAS  Google Scholar 

  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in perxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113. doi:10.1016/S0098-8472(00)00059-9

    Article  CAS  Google Scholar 

  • Rahnama H, Ebrahimzadeh H (2006) Antioxidant isoenzymes activities in potato plants (Solanum tuberosum L.) under salt stress. J Sci Islam Repub Iran 17:225–230

    CAS  Google Scholar 

  • Rastgoo L, Alemzadeh A (2011) Biochemical responses of Gouan (Aeluropus littoralis) to heavy metals stress. Aust J Crop Sci 5:375–383

    CAS  Google Scholar 

  • Rout JR, Sahoo SL (2012) Morphological and protein profile alterations in Withania somnifera L. with response to iron stress. Indian J Life Sci 2:21–25

    Google Scholar 

  • Rout JR, Sahoo SL (2013) Antioxidant enzyme gene expression in response to copper stress in Withania somnifera L. Plant Growth Regul 71:95–99. doi:10.1007/s10725-013-9806-7

    Article  CAS  Google Scholar 

  • Rout JR, Ram SS, Das R, Chakraborty A, Sudarshan M, Sahoo SL (2013) Copper-stress induced alterations in protein profile and antioxidant enzymes activities in the in vitro grown Withania somnifera L. Physiol Mol Biol Plants 19:353–361. doi:10.1007/s12298-013-0167-5

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory mannual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Scandalios JG, Guan L, Polidoros AN (1997) Catalase in plants: gene structure, properties, regulation and expression. In: Scandalios JG (ed) Oxidative stress and molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 343–406

    Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50. doi:10.1016/j.tplants.2008.10.007

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and anti-oxidative defense mechanism in plants under stressful conditions. J Botany 2012:1–26. doi:10.1155/2012/217037

    Article  Google Scholar 

  • Sinha S, Saxena R (2006) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere 62:1340–1350. doi:10.1016/j.chemosphere.2005.07.030

    Article  CAS  Google Scholar 

  • Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58:595–604. doi:10.1016/j.chemosphere.2004.08.071

    Article  CAS  Google Scholar 

  • Sudo E, Itouga M, Yoshida-Hatanaka K, Ono Y, Sakakibara H (2008) Gene expression and sensitivity in response to copper stress in rice leaves. J Exp Bot 59:3465–3474. doi:10.1093/jxb/ern196

    Article  CAS  Google Scholar 

  • Tanyolac D, Ekmekci Y, Unalan S (2007) Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67:89–98. doi:10.1016/j.chemosphere.2006.09.052

    Article  CAS  Google Scholar 

  • Tereshonok DV, Stepanova AY, Dolgikh YI, Osipova ES, Belyaev DV, Kudoyarova GR, Vysotskaya LB, Vartapetian BB (2011) Effect of the ipt gene expression on wheat tolerance to root flooding. Russ J Plant Physiol 58:799–807. doi:10.1134/S1021443711050244

    Article  CAS  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Panda SK (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39. doi:10.1016/j.plaphy.2012.01.006

    Article  CAS  Google Scholar 

  • Treeby M, Marschner H, Römheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial and synthetic metal chelators. Plant Soil 114:217–226. doi:10.1007/BF02220801

    Article  CAS  Google Scholar 

  • Vijayarengan P (2012) Mineral nutrient variations in rice (Oryza sativa) after treatment with exogenous cadmium. Int J Environ Biol 2:147–152

    Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472. doi:10.1016/j.jplph.2004.09.009

    Article  CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Uratsu SL, Cui M, Dandekar A, Fuchigami L (2007) Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress. J Appl Hortic 9:3–8

    Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75:1468–1476. doi:10.1016/j.chemosphere.2009.02.033

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158. doi:10.1007/s00128-008-9383-z

    Article  CAS  Google Scholar 

  • Woodbury W, Spencer A, Stahman M (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305. doi:10.1016/0003-2697(71)90375-7

    Article  CAS  Google Scholar 

  • Wu TM, Hsu YT, Lee TM (2009) Effects of cadmium on the regulation of antioxidant enzyme activity, gene expression, and antioxidant defenses in the marine macroalga Ulva fasciata. Bot Stud 50:25–34

    CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank the Director, Institute of Physics, Bhubaneswar for providing ion beam laboratory to study the metal analysis by PIXE. This work is financially supported by UGC-DAE Consortium for Scientific Research, Kolkata, India (Grant No. UGC-DAE-CSR-KC/CRS/2009/TE-01/1539), SAP-DRS Programme of UGC, New Delhi and Department of Biotechnology, Government of India, New Delhi, India.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Lata Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, J.R., Behera, S., Keshari, N. et al. Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants. Ecotoxicology 24, 401–413 (2015). https://doi.org/10.1007/s10646-014-1389-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1389-1

Keywords

Navigation