Skip to main content
Log in

Learning to Troubleshoot: A New Theory-Based Design Architecture

  • Original Paper
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Troubleshooting is a common form of problem solving. Technicians (e.g., automotive mechanics, electricians) and professionals (physician, therapists, ombudspersons) diagnose faulty systems and take direct, corrective action to eliminate any faults in order to return the systems to their normal states. Traditional approaches to troubleshooting instruction have emphasized either theoretical or domain knowledge about the system or specific troubleshooting procedures. These methods have failed to develop transferable troubleshooting skills in learners. In this article, we propose an architecture for designing learning environments for troubleshooting. The architecture integrates experiential, domain, and device knowledge in a learning system that enables learners to generate and test hypotheses for every action they take, relate every action to a conceptual model of the system, and query experienced troubleshooters about what they would do. The architecture includes three essential components: A multi-layered conceptual model of the system that includes topographic, function, strategic, and procedural representations; a simulator that requires the learner to generate hypotheses, reconcile the hypotheses to the system mode, test the hypotheses, and interpret the results from the test; and a case library that uses a case-based reasoning engine to access relevant stories of troubleshooting experiences as advice for the learner. This novel architecture can be used to develop learning environments for different kinds of troubleshooting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aamodt, A., and Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system approaches. Artificial Intelligence Communications 7(1), 39–59.

    Google Scholar 

  • Allen, J. A., Hayes, R. Y. T., and Buffardi, L. C. (2001). Maintenance training simulator fidelity and individual differences in transfer of training. In Sweezey, R. W., and Andrews, D. H. (eds.), Readings in Training and Simulation: A 30-Year Perspective, Human Factors Society, Santa Monica, CA, pp. 272–284.

    Google Scholar 

  • Allen, J. A., Terague, R. C., and Carter, R. E. (1996). The effects of network size and fault intermittency on troubleshooting performance. IEEE Trans. Syst. Man Cybern. 26(1): 125–132.

    Article  Google Scholar 

  • Axton, T. R., Doverspike, D., Park, S. R., and Barrett, G. V. (1997). A model of the information-processing and cognitive ability requirements for mechanical troubleshooting. Int. J. Cogn. Ergon. 1(3): 245–266.

    Google Scholar 

  • Bereiter, S. R., and Miller, S. M. (1989). A field study of computer-controlled manufacturing systems. IEEE Trans. Syst. Man Cybern. 19: 205–219.

    Article  Google Scholar 

  • Besnard, D., and Bastien-Toniazzo, M. (1999). Expert error in troubleshooting: An exploratory study in electronics. Int. J. Hum.-Comput. Stud. 50: 391–405.

    Article  Google Scholar 

  • Boshuizen, H. P. A., and Schmidt, H. G. (1992). The role of biomedical knowledge in clinical reasoning by experts, intermediates, and novices. Cogn. Sci. 5: 121–152.

    Google Scholar 

  • Brown, J. S., Burton, R. R., Bell, A. G. (1975). SOPHIE: A step toward creating a reactive learning environment. International Journal of Man-Machine Studies 7(5): 675–696.

    Google Scholar 

  • Brown, J. S., Collins, A., and Duguid, P. (1989). Situated cognition and the culture of learning. Educ. Res. 18: 32–42.

    Google Scholar 

  • Catrambone, R. C., and Holyoak, K. J. (1990). Learning subgoals and methods for solving probability problems. Memory Cogn. 18(6): 593–603.

    Google Scholar 

  • Chi, M. T. H., Bassock, M., Lewis, M. W., Reiman, P., and Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cogn. Sci. 13: 145–182.

    Article  Google Scholar 

  • Chi, M. T. H., Feltovich, P. J., and Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cogn. Sci. 5: 121–152.

    Article  Google Scholar 

  • Chi, M. T. H., and Van Lehn, K. A. (1991). The content of physics self-explanations. J. Learn. Sci. 1(1): 69–105.

    Article  Google Scholar 

  • Cooper, G., and Sweller, J. (1987). Effects of schema acquisition and rule automation on mathematical problem solving. J. Educ. Psychol. 79: 347–362.

    Article  Google Scholar 

  • David, R. (1983). Reasoning from first principles in electronic troubleshooting. Int. J. Man-Mach. Stud. 19: 403–423.

    Article  Google Scholar 

  • Davis, J. K., and Haueisen, W. C. (1976). Field independence and hypothesis testing. Percept. Motor Skills 43: 763–769.

    Google Scholar 

  • De Croock, M. B. M., van Merrienboer, J. J. G., and Paas, F. G. W. C. (1998). High versus low contextual interference in simulation-based training of troubleshooting skill: Effects of transfer performance and invested mental effort. Comput. Hum. Behav. 14(2): 249–267.

    Article  Google Scholar 

  • deKleer, J. (1985). How circuits work. In Bobrow, D. G. (ed.), Qualitative Reasoning About Physical Systems, MIT Press, Cambridge, MA, pp. 205–280.

    Google Scholar 

  • Dreyfus, H. L., and Dreyfus, S. E. (1986). Mind Over Machine, The Free Press, New York.

    Google Scholar 

  • Elstein, A. S., Shulman, L. S., and Sprafka, S. A. (1978). Medical Problem Solving: An Analysis of Clinical Reasoning, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Ericsson, K. A., and Smith, J. (1991). Prospects of the limits of the empirical study of expertise: An introduction. In Ericson, K. A., and Smith, J. (eds.), Toward A General Theory of Expertise: Prospects and Limits, Cambridge University Press, New York, pp. 1–38.

    Google Scholar 

  • Feurzig, W., and Ritter, F. (1988). Understanding reflective problem solving. In Pstoka, J., Massey, L. D., and Mutter, S. A. (eds.), Intelligent Tutoring Systems: Lessons Learned, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 435–450.

    Google Scholar 

  • Flesher, J. W. (1993). An exploration of technical troubleshooting expertise in design, manufacturing, and repair contexts. J. Ind. Teach. Educ. 31(1): 34–56.

    Google Scholar 

  • Frederiksen, N. (1984). Implications of cognitive theory for instruction in problem solving. Rev. Educ. Res. 54(3): 363–407.

    Google Scholar 

  • Frederiksen, J. R., and White, B. Y. (1988). Implicit testing within an intelligent tutoring system. Mach.-Mediat. Learn. 2: 351–372.

    Google Scholar 

  • Frederiksen, J. R., and White, B. Y. (1993). The avionics job-family tutor: An approach to developing generic cognitive skills within a job-situated context. In Artificial Intelligence in Education: Proceedings of AI-ED 93, World Conference on Artificial Intelligence in Education (pp. 513–520), Edinburgh, Scotland.

  • Gaba, D. (1991). Dynamic decision making in anesthesiology: Cognitive models and training approaches. In Evans, D. A., and Patel, V. (eds.), Advance Models of Cognition for Medical Training and Practice, Springer-Verlag, Heidelburg FRG, pp. 123–147.

    Google Scholar 

  • Gitomer, D. H. (1988). Individual differences in troubleshooting. Hum. Perform. 1(2): 111–131.

    Article  Google Scholar 

  • Gitomer, D. H., Steinberg, L. S., and Mislevy, R. J. (1995). Diagnostic assessment of a troubleshooting skill in an intelligent tutoring system. In Nichols, P. D., Chipman, S. F., and Brennan, R. L. (eds.), Cognitively Diagnostic Assessment, Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Gott, S. P., Hall, E. P., Pokorny, R. A., Dibble, E., and Glaser, R. (1993). A naturalistic study of transfer: Adaptive expertise in technical domains. In Detterman, D., and Sternberg, R. (eds.), Transfer on Trial: Intelligence, Cognition, and Instruction, Ablex Publishing, Westport, CT, pp. 258–288.

    Google Scholar 

  • Hall, E. P., Gott, S. P., and Pokorny, R. A. (1995). A procedural guide to cognitive task analysis: The PARI methodology (Tech. Report AL/HR-TR-1995–0108). Brooks Air Force Base, TX: Human Resources Directorate.

  • Hegarty, M. (1991). Knowledge and processes in mechanical problem solving. In Sternberg, R. J., and Frensch, P. A. (eds.), Complex Problem Solving: Principles and Mechanisms, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 253–185.

    Google Scholar 

  • Heller, L. C. (1982). An exploration of the effect of structure variables on mathematical word problem-solving achievement (Doctoral dissertation, Rutgers University, 1982). Dissert. Abstr. Int. 44: 416.

    Google Scholar 

  • Henning, P. H. (1996). A Qualitative Study of Situated Learning by Refrigeration Service Technicians Working for a Supermarket Chain in Northeastern Pennsylvania. Unpublished Ph.D. dissertation, The Pennsylvania State University, Pennsylvania.

  • Hernandez-Serrano, J., and Jonassen, D. H. (2003). The effects of case libraries on problem solving. J. Comput.-Assist. Learn. 19.

  • Hoc, J. M., and Carlier, X. (2000). A method to describe human diagnostic strategies in relation to the design of human-machine cooperation. Int. J. Cogn. Ergon. 4(4): 297–309.

    Article  Google Scholar 

  • Hung, W., and Jonassen, D. H. (2006). Conceptual understanding of causal reasoning in physics. International Journal of Science Education 28(5): 1–21.

    Google Scholar 

  • Johnson, S. D. (1988). Cognitive analysis of expert and novice troubleshooting performance. Perform. Improv. Q. 1(3): 38–54.

    Google Scholar 

  • Johnson, S. D. (1989). A description of experts and novice performance differences on technical troubleshooting tasks. J. Ind. Teach. Educ. 26: 19–37.

    Google Scholar 

  • Johnson, S. D. (1991). Training technical troubleshooters. Tech. Skills Train. 27(7): 9–16.

    Google Scholar 

  • Johnson, S. D., Flesher, J. W., and Chung, S.-P. (1995, December). Understanding troubleshooting styles to improve training methods. Paper presented at the Annual Meeting of the American Vocational Association, Denver, CO. (ERIC Document Reproduction Service No. ED 389 948).

  • Johnson, S. D., Flesher, J. W., Jehng, J. C., and Ferej, A. (1993). Enhancing electrical troubleshooting skills in a computer-coached practice environment. Interact. Learn. Environ. 3(3): 199–214.

    Article  Google Scholar 

  • Johnson, S. D., and Satchwell, R. E. (1993). The effect of functional flow diagrams on apprentice aircraft mechanics’ technical system understanding. Perform. Improv. Q. 6(4): 73–91.

    Google Scholar 

  • Johnson, W. B., and Norton, J. E. (1992). Modeling student performance in diagnostic tasks: A decade of evolution. In Regian, J. W., and Shute, V. J. (eds.), Cognitive Approaches to Automated Instruction, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 195–216.

    Google Scholar 

  • Johnson, W. B., and Rouse, W. B. (2001). Training maintenance technicians for troubleshooting: Two experiments with computer simulations. In Sweezy, R. W., and Andrews, D. H. (eds.), Readings in Training and Simulation: A 30-Year Perspective, Human Factors Society, Santa Monica, CA.

    Google Scholar 

  • Jonassen, D. H. (2000). Toward a design theory of problem solving. Educ. Technol. Res. Dev. 48(4): 63–85.

    Article  Google Scholar 

  • Jonassen, D. H., and Henning, P. (1999). Mental models: Knowledge in the head and knowledge in the world. Educ. Technol. 39(3): 37–42.

    Google Scholar 

  • Jonassen, D. H., and Hernandez-Serrano, J. (2002). Case-based reasoning and instructional design: Using stories to support problem solving. Educ. Technol. Res. Dev. 50(2): 65–77.

    Article  Google Scholar 

  • Jonassen, D. H., Mann, E., and Ambruso, D. J. (1996). Causal modeling for structuring case-based learning environments. Intell. Tutor. Media 6(3/4): 103–112.

    Google Scholar 

  • Kelley, H. H. (1973). The process of causal attribution. Am. Psychol. 28: 107–128.

    Article  Google Scholar 

  • Kieras, D. E., and Bovair, S. (1984). The role of a mental model in learning to operate a device. Cogn. Sci. 8: 255–273.

    Article  Google Scholar 

  • Kolodner, J. (1993). Case-Based Reasoning, Morgan Kaufman, New York.

    Google Scholar 

  • Konradt, U. (1995). Strategies of failure diagnosis in computer-controlled manufacturing systems. Int. J. Hum.-Comput. Stud. 43: 503–521.

    Article  Google Scholar 

  • Kurland, L. C., Granville, R. A., and MacLaughlin, D. B. (1992). Design, development, and implementation of an intelligent tutoring system for training radar mechanics to troubleshoot. In Intelligent Instruction by Computer: Theory and Practice, Taylor & Francis, Washington, DC.

    Google Scholar 

  • Kyllonen, P. C., and Shute, V. J. (1989). A taxonomy of learning skills. In Ackerman, P. L., Sternberg, R. J., and Glaser, R. (eds.), Learning and Individual Differences, Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Lajoie, S. P., and Lesgold, A. M. (1992a). Dynamic assessment of proficiency for solving procedural knowledge tasks. Educ. Psychol. 27(3): 365–384.

    Article  Google Scholar 

  • Lajoie, S. P., and Lesgold, A. (1992b). Apprenticeship training in the workplace: Computer-coached practice environment as a new form of apprenticeship. In Farr, M. J., and Psotka, J. (eds.), Intelligent Instruction in Computer: Theory and Practice, Taylor & Francis, Washington, DC.

    Google Scholar 

  • Larkin, J., McDermott, J., Simon, D. P., and Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science 208: 1335–1342.

    Article  PubMed  Google Scholar 

  • Lesgold, A., and Lajoie, S. (1991). Complex problem solving in electronics. In Sternberg, R. J., and Frensch, P. A. (eds.), Complex Problem Solving: Principles and Mechanisms, Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • McGuinness, C. (1986). Problem representation: The effects of spatial arrays. Memory Cogn. 14(3): 270–280.

    Google Scholar 

  • MacPherson, R. T. (1998). Factors affecting technological trouble shooting skills. J. Ind. Teach. Educ. 35(4): 5–28.

    Google Scholar 

  • Mayer, R. E., and Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educ. Psychol. 38(1): 43–52.

    Article  Google Scholar 

  • Means, B., and Gott, S. P. (1988). Cognitive task analysis as a basis for tutor development: Articulating abstract knowledge representation. In Psotka, J., Massey, L. D., and Mutter, S. A. (eds.), Intelligent Tutoring Systems: Lessons Learned, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 35–57.

    Google Scholar 

  • Moran, A. P. (1986). Field independence and proficiency in electrical fault diagnosis. IEEE Trans. Syst. Man Cybern. SMC-16(1): 162–165.

    Article  Google Scholar 

  • Morris, N. M., and Rouse, W. B. (1985). Review and evaluation of empirical research in troubleshooting. Hum. Factors 27(5): 503–530.

    Google Scholar 

  • Mwangi, W., and Sweller, J. (1998). Learning to solve compare word problems: The effect of example format and generating self-explanations. Cognit. Instr. 16: 173–199.

    Article  Google Scholar 

  • Newell, A., and Simon, H. A. (1972). Human Problem Solving, Printice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Paas, F., Renkl, A., and Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educ. Psychol. 38(1): 1–4.

    Article  Google Scholar 

  • Park, O. K., and Gittelman, S. S. (1992). Selective use of animation and feedback in computer-based instruction. Educ. Technol. Res. Dev. 40(4): 27–38.

    Article  Google Scholar 

  • Patrick, J. (1993). Cognitive aspects of fault-finding training and transfer. Le Travail Humain 56(2/3): 187–209.

    Google Scholar 

  • Patrick, J., and Haines, B. (1988). Training and transfer of fault-finding skill. Ergonomics 31(2): 193–210.

    Article  Google Scholar 

  • Perez, R. S. (1991). A view from troubleshooting. In Smith, M. U. (ed.), Toward a Unified Theory of Problem Solving, Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Perkins, D. N., and Grotzer, T. A. (2000, April). Models and Moves: Focusing on Dimensions of Causal Complexity to Achieve Deeper Scientific Understanding. Paper presented at the American Educational Research Association Annual Conference, New Orleans, LA.

    Google Scholar 

  • Pokorny, R. A., Hall, E. P., Gallaway, M. A., and Dibble, E. (1996). Analyzing components of work samples to evaluate performance. Mil. Psychol. 8(3): 161–177.

    Article  PubMed  Google Scholar 

  • Prochaska, J. O., DiClemente, C. C., and Norcross, J. C. (1992). In search of how people change: Applications to addictive behaviors. Am. Psychol. 47(9): 1102–1114.

    Article  PubMed  Google Scholar 

  • Rasmussen, J. (1984a). Strategies for state identification and diagnosis in supervisory control tasks, and design of computer-based support systems. In Rouse, W. B. (ed.), Adv. Man-Mach. Syst. Res., 1: 139–193.

  • Rasmussen, J. (1984b). Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering, North-Holland, Amsterdam.

    Google Scholar 

  • Reimann, P., and Chi, M. T. H. (1989). Human expertise. In Gilhooly, K. J. (ed.), Human and Machine Problem Solving, Plenum, New York, pp. 161–191.

    Google Scholar 

  • Renkl, A., and Atkinson, R. K. (2003). Structuring the transition from example study to problem solving in cognitive skill acquisition: A cognitive load perspective. Educ. Psychol. 38(1): 15–22.

    Article  Google Scholar 

  • Ronning, McCurdy, and Ballinger (1984, January). Individual differences: A third component in problem-solving instruction. J. Res. Sci. Teach. 21(1): 71–82.

    Article  Google Scholar 

  • Rouse, W. B., Pellegrino, S. J., and Rouse, S. H. (1980). A rule-based model of human problem solving performance in fault diagnosis tasks. IEEE Transactions on Systems Man, and Cybernetics, SMC-10, 366–376.

    Google Scholar 

  • Rowe, A. L., and Cooke, N. J. (1995). Measuring mental models: Choosing the right tool for the job. Hum. Resour. Dev. Q. 6(3): 243–262.

    Article  Google Scholar 

  • Rowe, A. L., Cooke, N. J., Hall, E. P., and Halgren, T. L. (1996). Toward an on-line knowledge assessment methodology: Building on the relationship between knowing and doing. J. Exp. Psychol. Appl. 2(1): 31–47.

    Article  Google Scholar 

  • Schaafstal, A., and Schraagen, J. M. (1993). The acquisition of troubleshooting skill implication for tools for learning. In Brouwer-Janse, M. D., and Harrington, T. L. (eds.), Human-Machine Communication for Educational Systems Design, Springer-Verlag, New York, pp. 107–118.

    Google Scholar 

  • Schaafstal, A., and Schraagen, J. M. (2000). Training of troubleshooting: A structured, task analytical approach. In Schraagen, J. M., Chipman, S. F., and Shalin, V. L. (eds.), Cognitive Task Analysis, Lawrence Erlbaum Associates, Mahwah, NJ, pp. 57–70.

    Google Scholar 

  • Schaafstal, A., Schraagen, J. M., and van Berlo, M. (2000). Cognitive task analysis and innovation of training: The case of structured troubleshooting. Hum. Factors 42(1): 75–86.

    Article  PubMed  Google Scholar 

  • Schank, R. C. (1990). Tell Me a Story: Narrative and Intelligence, Northwestern University Press, Evanston, IL.

    Google Scholar 

  • Schmidt, H. G., and Boshuizen, H. G. A. (1993). On acquiring expertise in medicine. Educ. Psychol. Rev. 5(3): 205–221.

    Article  Google Scholar 

  • Schön, D. A. (1993). The Reflective Practitioner—How Professionals Think in Action, Basic Books, New York.

    Google Scholar 

  • Sembugmorthy, V., and Chandrasekeran, B. (1986). Functional representations of devices and compilation of diagnostic problem-solving systems. In Kolodner, J., and Riesbeck, C. K. (eds.), Experience, Memory, and Reasoning, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 47–53.

    Google Scholar 

  • Sweller, J., and Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognit. Instr. 2: 59–89.

    Article  Google Scholar 

  • Swezey, R. W., Perez, R., and Allen, J. (1988). Effects of instructional delivery system and training parameter manipulations on electromechanical performance. Hum. Factors 30(6): 751–762.

    Google Scholar 

  • Thagard, P. (2000). Coherence in Thought and Action, MIT Press, Cambridge, MA.

    Google Scholar 

  • Tarmizi, R. A., and Sweller, J. (1988). Guidance during mathematical problem solving. J. Educ. Psychol. 80: 424–436.

    Article  Google Scholar 

  • Tenney, Y. J., and Kurland, L. C. (1988). The development of troubleshooting expertise in radar mechanics. In Psotka, J., Massey, L. D., and Mutter, S. A. (eds.), Intelligent Tutoring Systems: Lessons Learned, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 59–83.

    Google Scholar 

  • Tversky, B., Franklin, N., Taylor, H. A., and Bryant, D. J. (1994). Spatial mental models from descriptions. J. Am. Soc. Inf. Sci. 45(9): 656–669.

    Article  Google Scholar 

  • Van Merrienboer, J. J. G., Kirschner, P. A., and Kester, L. (2003). Taking the load off a learner's mental mind: Instructional design for complex learning. Educ. Psychol. 38(1): 5–13.

    Article  Google Scholar 

  • Ward, M., and Sweller, J. (1990). Structuring effective worked examples. Cognition and Instruction, 7(1): 1–39.

    Google Scholar 

  • Zeitz, C. M., and Spoehr, K. T. (1989). Knowledge organization and the acquisition of procedural expertise. Appl. Cogn. Psychol. 3: 313–336.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Jonassen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonassen, D.H., Hung, W. Learning to Troubleshoot: A New Theory-Based Design Architecture. Educ Psychol Rev 18, 77–114 (2006). https://doi.org/10.1007/s10648-006-9001-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-006-9001-8

Keywords

Navigation