Skip to main content
Log in

Flow and turbulence in an industrial/suburban roughness canopy

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

A field study conducted to investigate the flow and turbulence structure of the urban boundary layer (UBL) over an industrial/suburban area is described. The emphasis was on morning and evening transition periods, but some measurements covered the entire diurnal cycle. The data analysis incorporated the dependence of wind direction on morphometric parameters of the urban canopy. The measurements of heat and momentum fluxes showed the possibility of a constant flux layer above the height \(z\approx 2{H}\), wherein the Monin-Obukhov Similarity Theory (MOST) is valid; here \(H\) is the averaged building height. For the nocturnal boundary layer, the mean velocity and temperature profiles obeyed classical MOST scaling up to \(\sim 0.5\Lambda \left( {\sim 6{H}}\right) \), where \(\Lambda \) is the Obukhov length scale, beyond which stronger stratification may disrupt the occurrence of constant fluxes. For unstable and neutral cases, MOST scaling described the mean data well up to the maximum measured height \((\sim 6{H})\). Available MOST functions, however, could not describe the measured turbulence structure, indicating the influence of additional governing parameters. Alternative turbulence parameterizations were tested, and some were found to perform well. Calculation of integral length scales for convective and neutral cases allowed a phenomenological description of eddy characteristics within and above the urban canopy layer. The development of a significant nocturnal surface inversion occurred only on certain days, for which a criterion was proposed. The nocturnal UBL exhibited length scale relationships consistent with the evening collapse of the convective boundary layer and maintenance of buoyancy-affected turbulence overnight. The length and velocity scales so identified are useful in parameterizing turbulent dispersion coefficients in different diurnal phases of the UBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. UNEP. Population Division of the Department of Economic and Social Affairs of United Nations Secretariat (2011) World Population Prospects: The 2010 Revision, Highlights and Advanced Tables. Working Paper ESA/P/WP.220, 142 pp. [Available online at http://www.esa.un.org/unpd/wpp/Documentation/pdf/WPP2010_Highlights.pdf]

  2. Fernando HJS, Lee SM, Anderson J, Princevac M, Pardyjak E, Grossman-Clarke S (2001) Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ Fluid Mech 1:107–164. doi:10.1023/A:1011504001479

    Article  Google Scholar 

  3. Li K, Zhang P, Crittenden JC, Guhathakurta S, Chen Y, Fernando HJS, Sawhney A, McCartney P, Grimm N, Kahhat R, Joshi H, Konjevod G, Choi Y-J, Fonseca E, Allenby B, Gerrity D, Torrens PM (2007) Development of a framework for quantifying the environmental impacts of urban development and construction practices. Environ Sci Technol 41:5130–5136. doi:10.1021/es062481d

    Article  Google Scholar 

  4. Ching JS, Dupont S, Gilliam R, Burian S, Tang R (2004) Neighborhood scale air quality modeling in Houston using urban canopy parameters in MM5 and CMAQ with improved characterization of mesoscale lake-land breeze circulation. In: Proceeding of 5th Symposium of Urban Environment. Vancouver, August 23–27

  5. Settles GS (2006) Fluid mechanics and homeland security. Annu Rev Fluid Mech 38:87–110

    Article  Google Scholar 

  6. Andrews MJ, Ginstein FF, Kwicklis E, Linn R (2012) Security and environmental fluid dynamics. In: Fernando HJS (ed) Handbook of environmental fluid dynamics vol 1. CRC Press, Boca Raton, pp 107–121

    Google Scholar 

  7. Hang J, Li Y, Sandberg M, Buccolieri R, Di Sabatino S (2012) The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Build Environ 56: 346–360

    Article  Google Scholar 

  8. Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35:469–496. doi:10.1146/annurev.fluid.35.101101.161147

    Article  Google Scholar 

  9. Britter RE, Di Sabatino S (2012) Flow through urban canopies. In: Fernando HJS (ed) Handbook of environmental fluid dynamics vol 2. CRC Press, Boca Raton, pp 85–96

    Google Scholar 

  10. Oke TR (1988) Boundary layer climates. Routledge, New York

    Google Scholar 

  11. Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:941–990

    Article  Google Scholar 

  12. Fernando HJS (2010) Fluid dynamics of urban atmospheres in complex Terrain. Annu Rev Fluid Mech 42:365–389

    Article  Google Scholar 

  13. Allwine KJ, Shinn JH, Streit GE, Clawson KL, Brown M (2002) Overview of URBAN 2000: A Multiscale Field Study of Dispersion through an Urban Environment. Bull Amer Meteor Soc 83:521–536. http://dx.doi.org.proxy.library.nd.edu/10.1175/1520-0477(2002)083<0521:OOUAMF>2.3.CO;2

  14. Allwine KJ, Leach MJ, Stockham LW, Shinn JS, Hosker RP, Bowers JF, Pace JC (2004) Overview of joint urban 2003—an atmospheric dispersion study in Oklahoma City. Bull Am Meteorol Soc 83:745–753

    Google Scholar 

  15. Arnold SJ, ApSimon H, Barlow J, Belcher S, Bell M, Boddy JW, Britter R, Cheng H, Clark R, Colvile RN, Dimitroulopoulou S, Dobre A, Greally B, Kaur S, Knights A, Lawton T, Makepeace A, Martin D, Neophytou M, Neville S, Nieuwenhuijsen M, Nickless G, Price C, Robins A, Shallcross D, Simmonds P, Smalley RJ, Tate J, Tomlin AS, Wang H, Walsh P (2004) Introduction to the DAPPLE air pollution project. Sci Total Environ 332:139–153. doi:10.1016/j.scitotenv.2004.04.020

    Article  Google Scholar 

  16. Mestayer PG, Durand P, Augustin P, Bastin S, Bonnefond JM, Bénech B, Campistron B, Coppalle A, Delbarre H, Dousset B, Drobinski P, Druilhet A, Fréjafon E, Grimmond CSB, Groleau D, Irvine M, Kergomard C, Kermadi S, Lagouarde J-P, Lemonsu A, Lohou F, Long N, Masson V, Moppert C, Noilhan J, Offerle B, Oke TR, Pigeon G, Puygrenier V, Roberts S, Rosant J-M, Sanïd F, Salmond J, Talbaut M, Voogt J (2005) The urban boundary-layer field campaign in Marseille (UBL/CLU-ESCOMPTE): set-up and first results. Bound Layer Meteorol 114:315–365

    Article  Google Scholar 

  17. Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning S-E, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet Y-A, Ruffieux D, Salmond JA, Schatzmann M, Voogt JA (2005) BUBBLE—an urban boundary layer meteorology project. Theor Appl Climatol 81:231–261

    Article  Google Scholar 

  18. Wood CR, Arnold SJ, Balogun AA, Barlow JF, Belcher SE, Britter RE, Cheng H, Dobre A, Lingard JJN, Martin D, Neophytou MK, Petersson FK, Robins AG, Schallcross DE, Smalley RJ, Tate JE, Tomlin AS, White IR (2009) Dispersion experiments in central London: the 2007 DAPPLE project. Bull Am Metrol Soc 90:955–969

    Article  Google Scholar 

  19. Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediat asymptotics. Cambridge University Press, Cambridge

    Google Scholar 

  20. Brost RA, Wyngaard JC (1978) A model study of the stably stratified planetary boundary layer. J Atmos Sci 35:1427–1440

    Article  Google Scholar 

  21. Wood CR, Lacser A, Barlow JF, Padhra A, Belcher SE, Nemitz E, Helfter C, Famulari D, Grimmond CSB (2010) Turbulent flow at 190m height above London during 2006–2008: a climatology and the applicability of similarity theory. Bound Layer Meteorol 137:77–96

    Article  Google Scholar 

  22. Panofsky HA, Tennekes H, Lenschow DH, Wyngaard JC (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Bound Layer Meteorol 11:355–361

    Article  Google Scholar 

  23. Pahlow M, Parlange MB, Porte-Agel F (2001) On Monin-Obukhov similarity in the stable atmospheric boundary layer. Bound Layer Meteorol 99:225–248

    Article  Google Scholar 

  24. Moraes OLL, Acevedo OC, Degrazia GA, Anfossi D, da Silva R, Anabor V (2005) Surface layer turbulence parameters over a complex terrain. Atmos Environ 39:3103–3112

    Article  Google Scholar 

  25. Wilson JD (2008) Monin-Obukhov functions for standard deviations of velocity. Bound Layer Meteorol 129:353–369

    Article  Google Scholar 

  26. Quan L, Hu F (2009) Relationship between turbulent flux and variance in the urban canopy. Meteorol Atmos Phys 104:29–36

    Article  Google Scholar 

  27. Fernando HJS, Weil JC (2010) Whither the stable boundary layer? Bull Am Meteorl Soc 91:1475–1484. doi:10.1175/2010BAMS2770.1

    Article  Google Scholar 

  28. Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys Res 109:D24101

    Article  Google Scholar 

  29. Fernando HJS, Zajic D, Di Sabatino S, Dimitrova R, Hedquist B, Dallman A (2010) Flow, turbulence, and pollutant dispersion in urban atmospheres. Phys Fluids 22:051301–20

    Article  Google Scholar 

  30. Pelliccioni A, Monti P, Gariazzo C, Leuzzi G (2012) Some characteristics of the urban boundary layer above Rome, Italy, and applicability of Monin-Obukhov similarity. Environ Fluid Mech, OnlineFirst. doi:10.1007/s10652-012-9246-3

  31. Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Bound Layer Meteorol 97:25–45

    Article  Google Scholar 

  32. Kastner-Klein P, Rotach MW (2004) Mean flow and turbulence characteristics in an urban roughness sublayer. Bound Layer Meteorol 111:55–84

    Article  Google Scholar 

  33. Baik J-J, Kim J-J, Fernando HJS (2003) A CFD Model for simulating urban flow and dispersion. J Appl Meteorol 42:1636–1648

    Article  Google Scholar 

  34. Ellis AW, Hildebrandt ML, Thomas WM, Fernando HJS (2000) Analysis of the climatic mechanisms contributing to the summertime transport of lower atmospheric ozone across metropolitan Phoenix, Arizona, USA. Clim Res 15:13–31

    Article  Google Scholar 

  35. Di Sabatino S, Leo LS, Cataldo R, Ratti C, Britter RE (2010) Construction of digital elevation models for a southern european city and a comparative morphological analysis with respect to northern European and North American cities. J Appl Meteorol Climatol 49:1377–1396. doi:10.1175/2010JAMC2117.1

    Article  Google Scholar 

  36. Ratti C, Di Sabatino S, Britter RE (2006) Urban texture analysis with image processing techniques: winds and dispersion. Theor Appl Climatol 84:77–90

    Article  Google Scholar 

  37. Macdonald RW, Griffiths RF, Hall DJ (1998) A comparison of results from scaled field and wind tunnel modelling of dispersion in arrays of obstacles. Atmos Environ 32:3845–3862

    Article  Google Scholar 

  38. Di Sabatino S, Solazzo E, Paradisi P, Britter R (2008) A simple model for spatially-averaged wind profiles within and above an urban canopy. Bound Layer Meteorol 127:131–151

    Article  Google Scholar 

  39. Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292

    Article  Google Scholar 

  40. Belcher SE, Jerram N, Hunt JCR (2003) Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488:369–398. doi:10.1017/S0022112003005019

    Article  Google Scholar 

  41. Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulence statistics? J Atmos Ocean Technol 11:661–673

    Article  Google Scholar 

  42. Brazel AJ, Fernando HJS, Hunt JCR, Selover N, Hedquist BC, Pardyjak E (2005) Evening transition observations in Phoenix, Arizona. J Appl Meteorol 44:99–112

    Article  Google Scholar 

  43. Hunt JCR, Fernando HJS, Princevac M (2003) Unsteady thermally driven flows on gentle slopes. J Atmos Sci 60:2169–2182

    Article  Google Scholar 

  44. Lee S-M, Fernando HJS, Princevac M, Zajic D, Sinesi M, McCulley JL, Anderson J (2003) Transport and diffusion of ozone in the nocturnal and morning planetary boundary layer of the Phoenix valley. Environ Fluid Mech 3:331–362

    Article  Google Scholar 

  45. Fernando HJS, Verhoef B, Di Sabatino S, Leo LS, Park S (2013) The Phoenix evening transition flow experiment (TRANSFLEX). Bound Layer Meteorol. doi:10.1007/s10546-012-9795-5

  46. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford

    Google Scholar 

  47. Wang Y, Klipp CL, Garvey DM, Ligon DA, Williamson CC, Chang SS (2007) Nocturnal low-level-jet-dominated atmospheric boundary layer observed by a doppler lidar over Oklahoma City during JU2003. J Appl Meteorol Clim 46:2098–2109

    Article  Google Scholar 

  48. Gibson CH (1991) Laboratory, numerical, and oceanic fossil turbulence in rotating and stratified flows. J Geophys Res 96:12549–12566

    Article  Google Scholar 

  49. Fernando HJS (2003) Turbulent patches in stratified shear flows. Phys Fluids 15:3164–3169

    Article  Google Scholar 

  50. Fernando HJS (2005) Turbulent patches in a stratified shear flow. Phys Fluids 17:078102

    Article  Google Scholar 

  51. De Silva IPD, Fernando HJS (1992) Some aspects of mixing in a stratified turbulent patch. J Fluid Mech 240:601–625

    Article  Google Scholar 

  52. Cionco RM (1965) A mathematical model for air flow in a vegetative canopy. J Appl Meteorol 4:517–522

    Article  Google Scholar 

  53. Karlsson S (1986) The applicability of wind profile formulas to an urban-rural interface site. Bound Layer Meteorol 34:333–355

    Article  Google Scholar 

  54. Pérez IA, García MA, Sánchez ML, de Torre B (2005) Analysis and parameterization of wind profiles in the low atmosphere. Sol Energy 78:809–821

    Article  Google Scholar 

  55. Hicks BB, Callahan WJ, Dobosy RJ, Novakovskaia E (2012) Urban turbulence in space and in time. J Appl Meterol Clim 51:205–218

    Article  Google Scholar 

  56. Hanna SR, Britter RE (2002) Wind flow and vapor cloud dispersion at industrial sites. Am. Inst. Chem Eng, New York

    Book  Google Scholar 

  57. André JC, De Moor G, Lacarrere P, Therry G, Du Vachat R (1978) Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer. J Atmos Sci 35:1861–1883

    Article  Google Scholar 

  58. Deardorff JW (1983) A multi-limit mixed-layer entrainment formulation. J Phys Oceanogr 13:988–1002

    Article  Google Scholar 

  59. Clarke JF, Ching JKS, Godowitch JM (1982) An experimental study of turbulence in an urban environment. Technical Report US EPA, Research Triangle Park. NMS PB 226085

  60. Higgins CW, Froidevaux M, Simeonov V, Vercauteren N, Barry C, Parlange MB (2012) The effect of scale on the applicability of Taylor’s Frozen turbulence hypothesis in the atmospheric boundary layer. Bound Layer Meteorol 143:379–391

    Article  Google Scholar 

  61. Hunt JCR (1984) Turbulence structure in thermal convection and shear-free boundary layers. J Fluid Mech 138:161–184

    Article  Google Scholar 

  62. Kitaigorodskii SA (1960) On the computation of the thickness of the wind-mixing layer in the ocean. Bull Acad Sci USSR Geophys Ser 3:284–287

    Google Scholar 

  63. Hopfinger EJ, Linden PF (1982) Formation of thermoclines in zero-mean-shear turbulence subjected to a stabilizing buoyancy flux. J Fluid Mech 114:157–173

    Article  Google Scholar 

  64. Noh Y, Fernando HJS (1991) A numerical study on the formation of a thermocline in shear-free turbulence. Phys Fluids A 3:422–426

    Article  Google Scholar 

  65. Gibson CH (1982) Alternative interpretations for microstructure patches in the thermocline. J Phys Oceanogr 12:374–383

    Article  Google Scholar 

  66. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  67. Dobbins RA (1977) Observations of the barotropic Ekman layer over an urban terrain. Bound Layer Meteorol 11:39–54

    Article  Google Scholar 

  68. Rossby CG, Montgomery RB (1935) The layer of frictional influence in wind and ocean currents. Pap Phys Oceanogr Meteorol 3:1–101

    Google Scholar 

  69. Vickers D, Mahrt L (2004) Evaluating formulations of stable boundary layer height. J Appl Meteorol 43:1736–1749

    Article  Google Scholar 

  70. Pollard RT, Rhines PB, Thompson RORY (1973) The deepening of the wind-mixed layer (in the ocean). Geophys Fluid Dyn 4:381–404

    Google Scholar 

  71. Zilitinkevich S (1972) On the determination of the height of the Ekman boundary layer. Bound Layer Meteorol 3:141–145

    Article  Google Scholar 

  72. Businger JA, Arya SPS (1975) Heights of the mixed layer in the stably stratified planetary boundary layer. In: Frenkiel FN, Munn RE (eds) Advances in geophysics vol 18A. Elsevier, Engelska, pp 73–92

    Google Scholar 

  73. Yu TW (1978) Determing the height of the nocturnal boundary layer. J Appl Meteorol 17:28–33

    Article  Google Scholar 

  74. Nieuwstadt FTM (1981) The steady-state height and resistance laws of the nocturnal boundary layer: theory compared with Cabauw observations. Bound Layer Meteorol 20:3–17

    Article  Google Scholar 

  75. Zilitinkevich S, Baklanov A, Rost J, Smedman AS, Lykosov V, Calanca P (2002) Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. Quart J Roy Meteorol Soc 128:25–46

    Article  Google Scholar 

  76. Kitaigorodskii SA (1988) A note on similarity theory for atmospheric boundary layers in the presence of background stable stratification. Tellus 40A:434–438

    Article  Google Scholar 

  77. Kitaigorodskii SA, Joffre SM (1988) In search of simple scaling for the heights of the stratified atmospheric boundary layer. Tellus 40A:419–433

    Article  Google Scholar 

Download references

Acknowledgments

The experiments described in this paper were funded by the Arizona Department of Environmental Quality as part of the Hermoso Park Study. The data were analyzed with the support of the National Science Foundation CMG Program and the Office of Naval Research Award # N00014-11-1-0709, Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program. The authors are grateful to Dr. Laura Leo for assistance in the morphometric analysis and to the students at Arizona State University for their help in setting up the equipment and running balloon flights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dallman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallman, A., Di Sabatino, S. & Fernando, H.J.S. Flow and turbulence in an industrial/suburban roughness canopy. Environ Fluid Mech 13, 279–307 (2013). https://doi.org/10.1007/s10652-013-9274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-013-9274-7

Keywords

Navigation