Skip to main content
Log in

Coupling between free-surface fluctuations, velocity fluctuations and turbulent Reynolds stresses during the upstream propagation of positive surges, bores and compression waves

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In open channel, canals and rivers, a rapid increase in flow depth will induce a positive surge, also called bore or compression wave. The positive surge is a translating hydraulic jump. Herein new experiments were conducted in a large-size rectangular channel to characterise the unsteady turbulent properties, including the coupling between free-surface and velocity fluctuations. Experiments were repeated 25 times and the data analyses yielded the instantaneous median and instantaneous fluctuations of free-surface elevation, velocities and turbulent Reynolds stresses. The passage of the surge front was associated with large free-surface fluctuations, comparable to those observed in stationary hydraulic jumps, coupled with large instantaneous velocity fluctuations. The bore propagation was associated with large turbulent Reynolds stresses and instantaneous shear stress fluctuations, during the passage of the surge. A broad range of shear stress levels was observed underneath the bore front, with the probability density of the tangential stresses distributed normally and the normal stresses distributed in a skewed single-mode fashion. Maxima in normal and tangential stresses were observed shortly after the passage of a breaking bore roller toe. The maximum Reynolds stresses occurred after the occurrence of the maximum free-surface fluctuations, and this time lag implied some interaction between the free-surface fluctuations and shear stress fluctuations beneath the surge front, and possibly some causal effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tricker RAR (1965) Bores, breakers, waves and wakes. American Elsevier Publ. Co., New York

    Google Scholar 

  2. Peregrine DH (1966) Calculations of the development of an undular bore. J Fluid Mech 25:321–330

    Article  Google Scholar 

  3. Chanson H (2011) Tidal bores, aegir, eagre, mascaret, pororoca: theory and observations. World Scientific, Singapore. ISBN 9789814335416

    Book  Google Scholar 

  4. Henderson FM (1966) Open channel flow. MacMillan Company, New York

    Google Scholar 

  5. Chanson H (2004) The hydraulics of open channel flow: an introduction, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  6. Montes JS (1998) Hydraulics of open channel flow. ASCE Press, New-York

    Google Scholar 

  7. Bryson AE (1969) Film notes for waves in fluids. National Committee in Fluid Mechanics Films, No. 21611

  8. Lighthill J (1978) Waves in fluids. Cambridge University Press, Cambridge

    Google Scholar 

  9. Rayleigh L (1908) Note on tidal bores. Proc R Soc Lond Ser A 81(541):448–449

    Article  Google Scholar 

  10. Chanson H (2012) Momentum considerations in hydraulic jumps and bores. J Irrig Drain Eng (ASCE) 138(4):382–385. doi:10.1061/(ASCE)IR.1943-4774.0000409

    Article  Google Scholar 

  11. Hornung HG, Willert C, Turner S (1995) The flow field downsteam of a hydraulic jump. J Fluid Mech 287:299–316

    Article  Google Scholar 

  12. Koch C, Chanson H (2009) Turbulence measurements in positive surges and bores. J Hydraul Res (IAHR) 47(1):29–40. doi:10.3826/jhr.2009.2954

    Article  Google Scholar 

  13. Chanson H (2010) Unsteady turbulence in tidal bores: the effects of bed roughness. J Waterw Port Coast Ocean Eng (ASCE) 136. ISSN 0733-950X)

  14. Chanson H (2011) Turbulent shear stresses in hydraulic jumps and decelerating surges: an experimental study. Earth Surf Process Landf 36(2):180–189. doi:10.1002/esp.2031) (2 videos)

    Article  Google Scholar 

  15. Furuyama S, Chanson H (2010) A numerical solution of a tidal bore flow. Coast Eng J 52(3):215–234. doi:10.1142/S057856341000218X

    Article  Google Scholar 

  16. Lubin P, Chanson H, Glockner S (2010) Large eddy simulation of turbulence generated by a weak breaking tidal bore. Environ Fluid Mech 10(5):587–602. doi:10.1007/s10652-009-9165-0

    Article  Google Scholar 

  17. Benet F, Cunge JA (1971) Analysis of experiments on secondary undulations caused by surge waves in trapezoidal channels. J Hydraul Res IAHR 9(1):11–33

    Article  Google Scholar 

  18. Ponsy J, Carbonnell M (1966) Etude Photogrammétrique d’Intumescences dans le Canal de l’Usine d’Oraison (Basses-Alpes) (Photogrammetric study of positive surges in the oraison powerplant canal). Jl Soc Française de Photogram 22:18–28

    Google Scholar 

  19. Kjerfve B, Ferreira HO (1993) Tidal bores: first ever measurements. J Braz Assoc Adv Sci (Ciência e Cultura) 45(2):135–138

    Google Scholar 

  20. Chanson H, Reungoat D, Simon B, Lubin P (2011) High-frequency turbulence and suspended sediment concentration measurements in the Garonne River tidal bore. Estuar Coast Shelf Sci 95(2–3):298–306. doi:10.1016/j.ecss.2011.09.012

    Article  Google Scholar 

  21. Furgerot L, Mouaze D, Tessier B, Perez L, Haquin S (2013) Suspended sediment concentration in relation to the passage of a tidal bore (sée River Estuary, Mont Saint Michel, NW France). In: Proceedings of the Coastal Dynamics 2013, Arcachon, France, 24–28 June, pp. 671–682

  22. Reungoat D, Chanson H, Caplain B (2014) Sediment processes and flow reversal in the undular tidal bore of the Garonne River (France). Environ Fluid Mech 14(3):591–616. doi:10.1007/s10652-013-9319-y

    Article  Google Scholar 

  23. Reungoat D, Chanson H, Keevil CE (2015) Field measurements of unsteady turbulence in a tidal bore: the Garonne River in october 2013. J Hydraul Res (IAHR) 53(3):291–301. doi:10.1080/00221686.2015.1021717

    Article  Google Scholar 

  24. Greb SF, Archer AW (2007) Soft-Sediment Deformation Produced by Tides in a Meizoseismic Area, Turnagain Arm, Alaska. Geology 35(5):435–438

    Article  Google Scholar 

  25. Khezri N, Chanson H (2012) Inception of bed load motion beneath a bore. Geomorphology 153–154:39–47. doi:10.1016/j.geomorph.2012.02.006) (2 video movies)

    Article  Google Scholar 

  26. Khezri N, Chanson H (2015) Turbulent velocity, sediment motion and particle trajectories under breaking tidal bores: simultaneous physical measurements. Environ Fluid Mech 15(3):633–651. doi:10.1007/s10652-014-9358-z. doi:10.1007/s10652-014-9360

  27. Faas RW (1995) Rheological constraints on fine sediment distribution and behavior: The Cornwallis Estuary, Novia Scotia. In: Proceedings of the Canadian Coastal. Conference, Dartmouth, Nova Scotia, pp 301–314

  28. Keevil CE, Chanson H, Reungoat D (2015) Fluid flow and sediment entrainment in the Garonne River Bore and tidal bore collision. Earth Surf Process Landf 40(12):1574–1586. doi:10.1002/esp.3735

    Article  Google Scholar 

  29. Brocchini M, Peregrine DH (2001) The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions. J Fluid Mech 449:255–290

    Article  Google Scholar 

  30. Leng X, Chanson H (2015) Turbulent advances of a breaking bore: preliminary physical experiments. Exp Thermal Fluid Sci 62:70–77. doi:10.1016/j.expthermflusci.2014.12.002

    Article  Google Scholar 

  31. Docherty NJ, Chanson H (2012) Physical modelling of unsteady turbulence in breaking tidal bores. J Hydraul Eng (ASCE) 138(5):412–419. doi:10.1061/(ASCE)HY.1943-7900.0000542

    Article  Google Scholar 

  32. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng (ASCE) 128(1):117–126 (Discussion: Vol. 129, No. 6, pp. 484–489)

    Article  Google Scholar 

  33. Wahl TL (2003) Despiking acoustic doppler velocimeter data. J Hydraul Eng (ASCE) 129(6):484–487 (Discussion)

    Article  Google Scholar 

  34. Leng X, Chanson H (2015) Unsteady turbulence during the upstream propagation of undular and breaking tidal bores: an experimental investigation. Hydraulic Model Report No. CH98/15, School of Civil Engineering, The University of Queensland, Brisbane, Australia, 4 video movies. ISBN 978 1 74272 135 4

  35. Microsonic (2004) Instruction manual mic+ ultrasonic sensors with one analogue output. Microsonic GmbH, Germany

    Google Scholar 

  36. Nortek (2009) Vectrino velocimeter user guide. Nortek AS, Rud

  37. Mouaze D, Murzyn F, Chaplin JR (2005) Free surface length scale estimation in hydraulic jumps. J Fluids Eng Trans ASME 127:1191–1193

    Article  Google Scholar 

  38. Murzyn F, Mouaze D, Chaplin JR (2007) Air-water interface dynamic and free surface features in hydraulic jumps. J Hydraul Res (IAHR) 45(5):679–685

    Article  Google Scholar 

  39. Leng X, Chanson H (2015) Breaking Bore: physical observations of roller characteristics. Mech Res Commun 65:24–29. doi:10.1016/j.mechrescom.2015.02.008

    Article  Google Scholar 

  40. Treske A (1994) Undular bores (favre-waves) in open channels—experimental studies. J Hydraul Res (IAHR) 32(3):355–370 (Discussion: Vol. 33, No. 3, pp. 274–278)

    Article  Google Scholar 

  41. Lemoine R (1948) Sur les Ondes Positives de Translation dans les Canaux et sur le Ressaut Ondulé de Faible Amplitude (On the positive surges in channels and on the undular jumps of low wave height) Jl La Houille Blanche 183–185 (in French)

  42. Montes JS, Chanson H (1998) Characteristics of undular hydraulic jumps. results and calculations. J Hydraul Eng (ASCE) 124(2):192–205

    Article  Google Scholar 

  43. Bernal LP, Roshko A (1986) Streamwise vortex structure in plane mixing layers. J Fluid Mech 170:499–525

    Article  Google Scholar 

  44. Chanson H, Toi YH (2015) Physical modelling of breaking tidal bores: comparison with prototype data. J Hydraul Res (IAHR) 53(2):264–273. doi:10.1080/00221686.2014.989458

    Article  Google Scholar 

  45. Koch C, Chanson H (2008) Turbulent mixing beneath an undular bore front. J Coast Res 24(4):999–1007. doi:10.2112/06-0688.1

    Article  Google Scholar 

  46. Bradshaw P (1971) An introduction to turbulence and its measurement. Pergamon Press, Oxford, UK, The Commonwealth and International Library of Science and Technology Engineering and Liberal Studies, Thermodynamics and Fluid Mechanics Division

  47. Chanson H, Docherty NJ (2012) Turbulent velocity measurements in open channel bores. Eur J Mech B/Fluids 32:52–58. doi:10.1016/j.euromechflu.2011.10.001

    Article  Google Scholar 

  48. Nielsen P (1992) Coastal bottom boundary layers and sediment transport. Advanced series on ocean eng., vol. 4. World Scientific Publication, Singapore

  49. van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publ, Amsterdam

    Google Scholar 

  50. Graf WH (1971) Hydraulics of sediment transport. McGraw-Hill, New York

    Google Scholar 

  51. Sanchez M, Levacher D (2008) Erosion d’une vase de l’estuaire de la Loire sous l’action du courant (Erosion of a mud from the Loire estuary by a flow). Bull Eng Geol Environ 67:597–605. doi:10.1007/s10064-008-0159-9 (in French)

    Article  Google Scholar 

  52. Jacobs W, le Hir P, van Kesteren W, Cann P (2011) Erosion threshold of sand–mud mixtures. Cont Shelf Res 31(Supplement):S14–S25. doi:10.1016/j.csr.2010.05.012

    Article  Google Scholar 

  53. Shields A (1936) Anwendung der Aehnlichkeitsmechanik und der Turbulenz Forschung auf die Geschiebebewegung. Mitt. der Preussische Versuchanstalt für Wasserbau und Schiffbau, Berlin, Germany, No. 26

  54. Garcia M, Parker G (1991) Entrainment of bed sediment into suspension. J Hydraul Eng (ASCE) 117(4):414–435

    Article  Google Scholar 

  55. Garcia M, Parker G (1993) Experiments of the entrainment of sediment into suspension by a dense bottom current. J Geophys Res Oceans 98(C3):4793–4807

    Article  Google Scholar 

  56. Pouv KS, Besq A, Gullou SS, Toorman EA (2014) On cohesive sediment erosion: a first experimental study of the local processes using transparent model materials. Adv Water Resour 72:71–83

    Article  Google Scholar 

  57. Amos CL, Daborn GR, Christian HA, Atkinson A, Robertson A (1992) In situ erosion measurements on fine grained sediments from the Bay of Fundy. Mar Geol 108:175–196. doi:10.1016/0025-3227(92)90171-D

    Article  Google Scholar 

  58. Winterwerp JC, Van Kesteren WGM (2004) Introduction to the physics of cohesive sediment in the marine environment. In: Van Loon T (ed.) Developments in sedimentology, vol. 56. Elsevier, Amsterdam

  59. Narasimha R, Rudrakumar S, Prabhu A, Kailas SV (2007) Turbulent flux events in a nearly neutral atmospheric boundary layer. Philos Trans R Soc Ser A 365:841–858. doi:10.1098/rsta.2006.1949

    Article  Google Scholar 

  60. Trevethan M, Chanson H (2010) Turbulence and turbulent flux events in a small estuary. Environ Fluid Mech 10(3):345–368. doi:10.1007/s10652-009-9134-7

    Article  Google Scholar 

  61. Rao KN, Narasimha R, Narayanan AAB (1971) The “bursting” phenomena in a turbulent boundary layer. J Fluid Mech 48(2):339–352. doi:10.1017/S0022112071001605

    Article  Google Scholar 

  62. Nakagawa H, Nezu I (1981) Structure of space–time correlations of bursting phenomena in an open channel flow. J Fluid Mech 104:1–43. doi:10.1017/S0022112081002796

    Article  Google Scholar 

  63. Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. IAHR Monograph, IAHR FluidMechanics Section, Balkema Publication, Rotterdam

  64. Chachereau Y, Chanson H (2011) Free-surface fluctuations and turbulence in hydraulic jumps. Exp Thermal Fluid Sci 35(6):896–909. doi:10.1016/j.expthermflusci.2011.01.009

    Article  Google Scholar 

  65. Kucukali S, Chanson H (2008) Turbulence measurements in hydraulic jumps with partially-developed inflow conditions. Exp Thermal Fluid Sci 33(1):41–53. doi:10.1016/j.expthermflusci.2008.06.012

    Article  Google Scholar 

  66. Madsen PA (1981) A model for a turbulent bore. Ph.D. thesis, Technical University of Denmark, Institute of Hydrodynamics and Hydraulic Engineering, Copenhagen, Denmark (also Series Paper No. 28, Technical University of Denmark, Institute of Hydrodyamics and Hydraulic Engineering, Copenhagen, Denmark)

  67. Misra SK, Thomas M, Kambhamettu C, Kirby JT, Veron F, Brocchini M (2006) Estimation of complex air-water interfaces from particle image velocimetry images. Exp Fluids 40:764–775. doi:10.1007/s00348-006-0113-1

    Article  Google Scholar 

  68. Murzyn F, Chanson H (2009) Free-surface fluctuations in hydraulic jumps: experimental observations. Exp Thermal Fluid Sci 33(7):1055–1064. doi:10.1016/j.expthermflusci.2009.06.003

    Article  Google Scholar 

  69. Wang H, Chanson H (2015) Experimental study of turbulent fluctuations in hydraulic jumps. J Hydraul Eng (ASCE) 141(7), Paper 04015010, 10. doi:10.1061/(ASCE)HY.1943-7900.0001010

  70. Wang H, Murzyn F, Chanson H (2014) Total pressure fluctuations and two-phase flow turbulence in hydraulic jumps. Exp Fluids 55(11), Paper 1847, 16. doi:10.1007/s00348-014-1847-9

Download references

Acknowledgments

The authors thank Dr Carlo Gualtieri (University of Napoli “Federico II”, Italy), and Professor Shin-ichi Aoki (Osaka University, Japan) for their valuable comments. They also thank Professor Pierre Lubin (University of Bordeaux, France) for his contribution. The authors acknowledge the technical assistance of Jason Van Der Gevel and Stewart Matthews (The University of Queensland). The financial support through the Australian Research Council (Grant DP120100481) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Chanson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 746 kb)

Appendix 1. Maximum reynolds stresses and corresponding time lag Δt in positive surges

Appendix 1. Maximum reynolds stresses and corresponding time lag Δt in positive surges

During the present study, the maximum Reynolds stresses and associated time lag ΔT between the occurrences of the maximum stress and bore front arrival were carefully documented. The experimental results are reported below.

So

Q (m3/s)

d1

(m)

Fr1

z/d1

Bore type

(vxvx)max

(m2/s2)

Time lag ΔTxx

(s)

(vxvy)max

(m2/s2)

Time lag ΔTxy

(s)

(vyvy)max

(m2/s2)

Time lag ΔTyy

(s)

(vyvz)max

(m2/s2)

Time lag ΔTyz

(s)

(vzvz)max

(m2/s2)

Time lag ΔTzz

(s)

(vxvz)max

(m2/s2)

Time lag ΔTxz

(s)

0.0075

0.102

0.099

2.2

0.1

Breaking

0.095

1.05

0.039

0.945

0.017

2.60

0.005

3.215

0.057

0.88

0.073

1.03

0.0075

0.102

0.099

2.2

0.4

Breaking

0.074

1.665

0.033

2.155

0.023

2.465

−0.011

2.44

0.052

1.41

−0.017

1.71

0.0075

0.102

0.1

2.2

0.8

Breaking

0.077

1.795

0.012

2.015

0.019

2.6

−0.021

1.14

0.543

0.57

0.05

0.565

0.0005

0.055

0.074

1.5

0.1

Breaking

0.038

1.21

0.007

1.13

0.009

2.09

−0.007

1.46

0.039

1.50

−0.004

1.28

0.0005

0.055

0.074

1.5

0.4

Breaking

0.026

1.57

0.004

1.44

0.006

3.07

−0.006

1.76

0.024

3.51

−0.011

2.88

0.0005

0.055

0.074

1.5

0.8

Breaking

0.017

5.36

0.023

5.09

0.004

4.89

−0.01

1.83

0.297

1.31

0.027

1.30

0

0.101

0.175

1.5

0.1

Breaking

0.011

1.33

−0.001

1.22

N/A

N/A

N/A

N/A

0.013

1.33

−0.006

1.19

0

0.102

0.181

1.5

0.4

Breaking

0.016

0.52

−0.001

1.21

0.003

1.95

−0.004

1.95

0.011

0.46

−0.005

0.56

0

0.102

0.175

1.5

0.8

Breaking

0.008

1.43

0.001

1.44

0.003

1.35

0.002

1.35

0.015

1.38

−0.005

1.62

0

0.102

0.205

1.2

0.1

Undular

0.009

1.025

0.001

1.065

N/A

N/A

N/A

N/A

0.015

1.51

−0.005

0.64

0

0.102

0.204

1.2

0.4

Undular

0.006

1.495

−0.001

0.35

N/A

N/A

N/A

N/A

N/A

N/A

0.002

1.48

0

0.102

0.203

1.2

0.8

Undular

0.006

0.88

−0.001

0.865

N/A

N/A

−0.001

1.42

0.028

1.82

−0.003

1.19

0

0.056

0.196

1.2

0.1

Undular

0.007

2.665

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

−0.003

0.42

0

0.056

0.197

1.2

0.4

Undular

0.006

0.79

N/A

N/A

N/A

N/A

−0.002

1.18

0.103

2.285

N/A

N/A

0

0.056

0.198

1.2

0.8

Undular

0.007

0.925

−0.001

0.955

0.0008

0.925

−0.002

1.565

0.033

2.395

−0.003

0.805

  1. Italic data unusual although likely meaningful data; Bold Italic data suspicious data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, X., Chanson, H. Coupling between free-surface fluctuations, velocity fluctuations and turbulent Reynolds stresses during the upstream propagation of positive surges, bores and compression waves. Environ Fluid Mech 16, 695–719 (2016). https://doi.org/10.1007/s10652-015-9438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-015-9438-8

Keywords

Navigation