Skip to main content
Log in

X-ray diffraction and SEM study of kidney stones in Israel: quantitative analysis, crystallite size determination, and statistical characterization

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Urinary calculi have been recognized as one of the most painful medical disorders. Tenable knowledge of the phase composition of the stones is very important to elucidate an underlying etiology of the stone disease. We report here the results of quantitative X-ray diffraction phase analysis performed on 278 kidney stones from the 275 patients treated at the Department of Urology of Hadassah Hebrew University Hospital (Jerusalem, Israel). Quantification of biominerals in multicomponent samples was performed using the normalized reference intensity ratio method. According to the observed phase compositions, all the tested stones were classified into five chemical groups: oxalates (43.2%), phosphates (7.7%), urates (10.3%), cystines (2.9%), and stones composed of a mixture of different minerals (35.9%). A detailed analysis of each allocated chemical group is presented along with the crystallite size calculations for all the observed crystalline phases. The obtained results have been compared with the published data originated from different geographical regions. Morphology and spatial distribution of the phases identified in the kidney stones were studied with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). This type of detailed study of phase composition and structural characteristics of the kidney stones was performed in Israel for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abboud, I. A. (2008). Mineralogy and chemistry of urinary stones: Patients from North Jordan. Environmental Geochemistry and Health, 30, 445–463.

    Article  CAS  Google Scholar 

  • Abdel-Halim, R. E., & Abdel-Aal, R. E. (1999). Classification of urinary stones by cluster analysis of ionic composition data. Computer Methods and Programs in Biomedicine, 58, 69–81.

    Article  CAS  Google Scholar 

  • Abdel-Halim, R. E., Al-Sibaai, A., & Baghlaf, A. O. (1993). Ionic associations within 460 non-infections urinary stones. A quantitative chemical analytical study applying a new classification. Scandinavian Journal of Urology and Nephrology, 27, 155–162.

    Article  CAS  Google Scholar 

  • Al-Naam, L. M., Baqir, Y., Rasoul, H., Susan, L. P., & Alkhaddar, M. (1987). The incidence and composition of urinary stones in southern Iraq. Saudi Medical Journal, 8, 456–461.

    Google Scholar 

  • Atsmon, A., De Vries, A., & Frank, M. (1963). Uric acid lithisasis. New York, NY: Elsevier.

    Google Scholar 

  • Bartoletti, R., Cai, T., Mondaini, N., Melone, F., Travaglini, F., Carini, M., et al. (2007). Epidemiology and risk factors in urolithiasis. Urologia Intertationalis, 79, 3–7.

    Article  Google Scholar 

  • Chou, Y. H., Li, C. C., Wu, W. J., Juan, Y. S., Huang, S. P., Lee, Y. C., et al. (2007). Urinary stone analysis of 1000 patients in southern Taiwan. Kaohsiung Journal of Medical Sciences, 23, 63–66.

    Article  CAS  Google Scholar 

  • Chung, F. H. (1974). Quantitative interpretation of X-ray diffraction patterns. I. Matrix-flushing method of quantitative multicomponent analysis. Journal of Applied Crystallography, 7, 519–525.

    Article  Google Scholar 

  • Coe, F. L., Evan, A., & Worcester, E. (2005). Kidney stone disease. Journal of Clinical Investigations, 115, 2598–2608.

    Article  CAS  Google Scholar 

  • Corns, C. M. (1983). Infrared analysis of renal calculi: A comparison with conventional techniques. Annals of Clinical Biochemistry, 20, 20–25.

    CAS  Google Scholar 

  • De la Torre, A. G., & Aranda, M. A. G. (2003). Accuracy in Rietveld quantitative phase analysis of Portland cements. Journal of Applied Crystallography, 36, 1169–1176.

    Article  Google Scholar 

  • DIFFRACplus EVA http://www.bruker-axs.de/eva.html.

  • Dursun, I., Poyrazoglu, H. M., Dusunsel, R., Gunduz, Z., Gurgoze, M. K., Demirci, D., et al. (2008). Pediatric urolithiasis: An 8-year experience of single centre. International Journal of Nephrology and Urology, 40, 3–9.

    Article  Google Scholar 

  • Fazil Marickar, Y. M., Lekshmi, P. R., Varma, L., & Koshy, P. (2009). Elemental distribution analysis of urinary crystals. Urological Research, 37, 277–282.

    Article  CAS  Google Scholar 

  • Ghosh, S., Basu, S., Chakraborty, S., & Mukherjee, A. K. (2009). Structural and microstructural characterization of human kidney stones from eastern India using IR spectroscopy, scanning electron microscopy, thermal study and X-ray Rietveld analysis. Journal of Applied Crystallography, 42, 629–635.

    Article  CAS  Google Scholar 

  • Grygar, T., Frybort, O., Bezdieka, P., & Pekarek, T. (2008). Quantitative analysis of antipyretics and analgesics in solid dosage forms by powder X-ray diffraction. Chemia Analityczna, Chemical Analysis (Warszawa), 53, 187–200.

    CAS  Google Scholar 

  • Herring, L. (1962). Observations on the analysis of 10, 000 urinary calculi. Journal of Urology, 88, 545–562.

    CAS  Google Scholar 

  • Hillier, S. (2000). Accurate quantitative analysis of clay and other minerals in sandstones by XRD: Comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals, 35, 291–302.

    Article  CAS  Google Scholar 

  • Hossain, R. Z., Ogawa, Y., Hokama, S., Morozumi, M., & Hatano, T. (2003). Urolithiasis in Okinawa, Japan: A relatively high prevalence of uric acid stones. International Journal of Urology, 10, 411–415.

    Article  Google Scholar 

  • Kanchana, G., Sundaramoorthi, P., & Jeyanthi, G. P. (2009). Bio-chemical analysis and FTIR-spectral studies of artificially removed renal stone mineral constituents. Journal of Minerals & Materials Characterization & Engineering, 8, 161–170.

    Google Scholar 

  • Khan, A. S., Rai, M. E., Gandapur Pervaiz, A., Shah, A. H., Hussain, A. A., & Siddiq, M. (2004). Epidemiological risk factors and composition of urinary stones in Riyadh Saudi Arabia. Journal of Ayub Medical College, 16, 56–58.

    Google Scholar 

  • Kleinman, J. G., Wesson, J. A., & Sudakoff, G. S. (2004). Pathogenesis, pathophysiology, and classification. Clinical Reviews in Bone and Mineral Metabolism, 2, 187–207.

    Article  Google Scholar 

  • Kraus, W., & Nolze, G. (1996). POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301–303.

    Article  CAS  Google Scholar 

  • Leonard, R. H. (1961). Quantitative composition of kidney stones. Clinical Chemistry, 7, 546–551.

    CAS  Google Scholar 

  • Mandel, N. S., & Mandel, G. S. (1989). Urinary tract stone disease in the United States veteran population: II geographical variation in composition. Journal of Urology, 142, 1516–1521.

    CAS  Google Scholar 

  • Miller, N. L., & Lingeman, J. E. (2007). Management of kidney stones. British Medical Journal, 334, 468–472.

    Article  Google Scholar 

  • Moe, O. W. (2006). Kidney stones: Pathophysiology and medical management. The Lancet, 367, 333–344.

    Article  CAS  Google Scholar 

  • Nasir, S. J. (1999). The mineralogy and chemistry of urinary stones from the United Arab Emirates. Qatar University Science Journal, 18, 189–202.

    Google Scholar 

  • Newman, A. W., & Byrn, S. R. (2003). Solid-state analysis of the active pharmaceutical ingredient in drug products. Drug Discovery Today, 8, 898–905.

    Article  CAS  Google Scholar 

  • Pak, C. Y. C., Poindexter, J. R., Adams-Huet, B., & Pearle, M. S. (2003). Predictive value of kidney stone composition in the detection of metabolic abnormalities. American Journal of Medicine, 115, 26–32.

    Article  CAS  Google Scholar 

  • Parmar, M. S. (2004). Kidney stones. British Medical Journal, 328, 1420–1424.

    Article  Google Scholar 

  • Singh, I. (2008). Renal geology (quantitative renal stone analysis) by ‘Fourier transform infrared spectroscopy’. International Urology and Nephrology, 40, 595–602.

    Article  Google Scholar 

  • Smith, C. L. (1998). Renal stone analysis: Is there any clinical value? Current Opinion in Nephrology and Hypertension, 7, 703–709.

    Article  CAS  Google Scholar 

  • Sours, R. E., & Swift, J. A. (2004). The relationship between uric acid crystals and kidney stone disease. ACA Transactions, 39, 83–89.

    CAS  Google Scholar 

  • Stephenson, G. A., Forbes, R. A., & Reutzel-Edens, S. M. (2001). Characterization of the solid state: quantitative issues. Advanced Drag Delivery Reviews, 48, 67–90.

    Article  CAS  Google Scholar 

  • The International Centre for Diffraction Data, http://www.icdd.com/products/pdf4.htm.

  • Tobias, P., & Croarkin, C. (Eds.). (2006). NIST/SEMATECH Engineering Statistics Internet Handbook, National Institute of Standards and Technology. Washington: US Dept. of Commerce.

    Google Scholar 

  • Tosukhowong, P., Boonla, C., Ratchanon, S., Tanthanuch, M., Poonpirome, K., Supataravanich, P., et al. (2007). Crystalline composition and etiologic factors of kidney stone in Thailand: Update 2007. Asian Biomedicine, 1, 87–95.

    Google Scholar 

  • Trinchieri, A., Rovera, F., Nespoli, R., & Curro, A. (1996). Clinical observations on 2086 patients with upper urinary tract stone. Archivio Italiano di Urologia, Andrologia, 64, 251–262.

    Google Scholar 

  • Uvarov, V., & Popov, I. (2007). Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Materials Characterization, 58, 883–891.

    Article  CAS  Google Scholar 

  • Uvarov, V., & Popov, I. (2008). Development and metrological characterization of quantitative X-ray diffraction phase analysis for the mixtures of clopidogrel bisulphate polymorphs. Journal of Pharmaceutical and Biomedical Analysis, 46, 676–682.

    Article  CAS  Google Scholar 

  • Zaidman, J. L., Eidelman, A., Pinto, N., Negelev, S., & Assa, S. (1986). Trends in urolithiasis in various ethnic groups and by age, in Israel. Clinica Chimica Acta, 160, 87–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Uvarov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uvarov, V., Popov, I., Shapur, N. et al. X-ray diffraction and SEM study of kidney stones in Israel: quantitative analysis, crystallite size determination, and statistical characterization. Environ Geochem Health 33, 613–622 (2011). https://doi.org/10.1007/s10653-011-9374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-011-9374-6

Keywords

Navigation