Skip to main content

Advertisement

Log in

Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Health risk of arsenic (As) has received increasing attention. Acute and chronic exposure to As could cause several detrimental effects on human health. As toxicity is closely related to its bioaccessibility and metabolism. In real environment, many factors, such as diet and nutrition, can influence As bioaccessibility, metabolism and toxicity. This paper mainly reviews the influences of diets and elements on As bioaccessibility, metabolism and toxicity and their underlying mechanisms to provide suggestions for future investigations. Vitamins, jaggery, fruit, tea, glutathione, N-acetylcysteine and zinc could reduce the As-induced toxicity by increasing antioxidative enzymes to antagonize oxidative stress caused by As and/or increasing As methylation. However, bean and betel nut could increase risk of skin lesions caused by As. Interestingly, high-fat diet, selenium and iron have incompatible effects on As bioaccessibility, metabolism and toxicity in different experimental conditions. Based on current literatures, the As methylation and As-induced oxidative damage might be two main ways that the diets and elements influence As toxicity. Combined application of in vitro human cell lines and gastrointestinal models might be useful tools to simultaneously characterize the changes in As bioaccessibility and toxicity in the future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adair, B. M., Moore, T., Conklin, S. D., Creed, J. T., Wolf, D. C., & Thomas, D. J. (2007). Tissue distribution and urinary excretion of dimethylated arsenic and its metabolites in dimethylarsinic acid- or arsenate-treated rats. Toxicology and Applied Pharmacology, 222(2), 235–242.

    Article  CAS  Google Scholar 

  • Ahmad, S., Kitchin, K. T., & Cullen, W. R. (2000). Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Archives of Biochemistry and Biophysics, 382(2), 195–202.

    Article  CAS  Google Scholar 

  • Alava, P., Du Laing, G., Odhiambo, M., Verliefde, A., Tack, F., & Van de Wiele, T. R. (2013a). Arsenic bioaccessibility upon gastrointestinal digestion is highly determined by its speciation and lipid-bile salt interactions. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering., 48(6), 656–665.

    Article  CAS  Google Scholar 

  • Alava, P., Tack, F., Du Laing, G., & Van de Wiele, T. (2013b). Arsenic undergoes significant speciation changes upon incubation of contaminated rice with human colon micro biota. Journal of Hazardous Materials, 262, 1237–1244.

    Article  CAS  Google Scholar 

  • Alava, P., Tack, F., Laing, G. D., & de Wiele, T. V. (2012). HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota. Biomedical Chromatography, 26(4), 524–533.

    Article  CAS  Google Scholar 

  • Altuve, A., Silchenko, S., Lee, K. H., Kuczera, K., Terzyan, S., Zhang, X. J., et al. (2001). Probing the differences between rat liver outer mitochondrial membrane cytochrome b(5) and microsomal cytochromes b(5). Biochemistry, 40(32), 9469–9483.

    Article  CAS  Google Scholar 

  • Antonio Garcia, M. T., Herrera Duenas, A., & Pineda Pampliega, J. (2013). Hematological effects of arsenic in rats after subchronical exposure during pregnancy and lactation: The protective role of antioxidants. Experimental and Toxicologic Pathology, 65(5), 609–614.

    Article  CAS  Google Scholar 

  • Arnold, L. L., Eldan, M., Nyska, A., van Gemert, M., & Cohen, S. M. (2006). Dimethylarsinic acid: Results of chronic toxicity/oncogenicity studies in F344 rats and in B6C3F1 mice. Toxicology, 223(1–2), 82–100.

    Article  CAS  Google Scholar 

  • Azam, S., Hadi, N., Khan, N. U., & Hadi, S. M. (2004). Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: Implications for anticancer properties. Toxicology in Vitro, 18(5), 555–561.

    Article  CAS  Google Scholar 

  • Beak, D. G., Basta, N. T., Scheckel, K. G., & Traina, S. J. (2006). Bioaccessibility of arsenic(V) bound to ferrihydrite using a simulated gastrointestinal system. Environmental Science and Technology, 40(4), 1364–1370.

    Article  CAS  Google Scholar 

  • Calatayud, M., Gimeno-Alcaniz, J. V., Velez, D., & Devesa, V. (2014). Trivalent arsenic species induce changes in expression and levels of proinflammatory cytokines in intestinal epithelial cells. Toxicology Letters, 224(1), 40–46.

    Article  CAS  Google Scholar 

  • Chandrasekaran, V. R. M., Muthaiyan, I., Huang, P.-C., & Liu, M.-Y. (2010). Using iron precipitants to remove arsenic from water: Is it safe? Water Research, 44(19), 5823–5827.

    Article  CAS  Google Scholar 

  • Chen, T.-H., Gross, J. A., & Karasov, W. H. (2009). Chronic exposure to pentavalent arsenic of larval leopard frogs (Rana pipiens): Bioaccumulation and reduced swimming performance. Ecotoxicology, 18(5), 587–593.

    Article  Google Scholar 

  • Chung, C.-J., Pu, Y.-S., Chen, Y.-T., Su, C.-T., Wu, C.-C., Shiue, H.-S., et al. (2011). Protective effects of plasma alpha-tocopherols on the risk of inorganic arsenic-related urothelial carcinoma. Science of the Total Environment, 409(6), 1039–1045.

    Article  CAS  Google Scholar 

  • Das, S., Jean, J. S., & Kar, S. (2013). Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils, Central India. Ecotoxicology and Environmental Safety., 92, 252–257.

    Article  CAS  Google Scholar 

  • Dash, J. R., Datta, B. K., Sarkar, S., & Mandal, T. K. (2013). Chronic arsenicosis in cattle: Possible mitigation with Zn and Se. Ecotoxicology and Environmental Safety, 92, 119–122.

    Article  CAS  Google Scholar 

  • Deb, G., Thakur, V. S., & Gupta, S. (2013). Multifaceted role of EZH2 in breast and prostate tumorigenesis: Epigenetics and beyond. Epigenetics, 8(5), 464–476.

    Article  CAS  Google Scholar 

  • Depner, C. M., Torres-Gonzalez, M., Tripathy, S., Milne, G., & Jump, D. B. (2012). Menhaden oil decreases high-fat diet-induced markers of hepatic damage, steatosis, inflammation, and fibrosis in obese Ldlr(−/−) mice. Journal of Nutrition, 142(8), 1495–1503.

    Article  CAS  Google Scholar 

  • Dilda, P. J., & Hogg, P. J. (2007). Arsenical-based cancer drugs. Cancer Treatment Reviews, 33(6), 542–564.

    Article  CAS  Google Scholar 

  • Dopp, E., Hartmann, L. M., von Recklinghausen, U., Florea, A. M., Rabieh, S., Zimmermann, U., et al. (2005). Forced uptake of trivalent and pentavalent methylated and inorganic arsenic and its cyto-/genotoxicity in fibroblasts and hepatoma cells. Toxicological Sciences, 87(1), 46–56.

    Article  CAS  Google Scholar 

  • Dopp, E., von Recklinghausen, U., Hartmann, L. M., Stueckradt, I., Pollok, I., Rabieh, S., et al. (2008). Subcellular distribution of inorganic and methylated arsenic compounds in human urothelial cells and human hepatocytes. Drug Metabolism and Disposition, 36(5), 971–979.

    Article  CAS  Google Scholar 

  • Duramad, P., Tager, I. B., & Holland, N. T. (2007). Cytokines and other immunological biomarkers in children’s environmental health studies. Toxicology Letters, 172(1–2), 48–59.

    Article  CAS  Google Scholar 

  • Dutta, M., Ghosh, D., Ghosh, A. K., Bose, G., Chattopadhyay, A., Rudra, S., et al. (2014). High fat diet aggravates arsenic induced oxidative stress in rat heart and liver. Food and Chemical Toxicolog, 66, 262–277.

    Article  CAS  Google Scholar 

  • Flora, S. J. S. (2011). Arsenic-induced oxidative stress and its reversibility. Free Radical Biology and Medicine, 51(2), 257–281.

    Article  CAS  Google Scholar 

  • Flora, S. J. S., Bhadauria, S., Kannan, G. M., & Singh, N. (2007). Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: A review. Journal of Environmental Biology, 28(2), 333–347.

    CAS  Google Scholar 

  • Gamble, M. V., Liu, X., Slavkovich, V., Pilsner, J. R., Ilievski, V., Factor-Litvak, P., et al. (2007). Folic acid supplementation lowers blood arsenic. American Journal of Clinical Nutrition, 86(4),1202–1209.

  • Ghosh, A., Majumder, S., Awal, M. A., & Rao, D. R. (2013). Arsenic exposure to dairy cows in Bangladesh. Archives of Environmental Contamination and Toxicology, 64(1), 151–159.

    Article  CAS  Google Scholar 

  • Gosse, J. A., Taylor, V. F., Jackson, B. P., Hamilton, J. W., & Bodwell, J. E. (2014). Monomethylated trivalent arsenic species disrupt steroid receptor interactions with their DNA response elements at non-cytotoxic cellular concentrations. Journal of Applied Toxicology, 34(5), 498–505.

    Article  CAS  Google Scholar 

  • Guha Mazumder, D., & Dasgupta, U. B. (2011). Chronic arsenic toxicity: Studies in West Bengal, India. The Kaohsiung Journal of Medical Sciences, 27(9), 360–370.

    Article  CAS  Google Scholar 

  • Hansen, H. R., Raab, A., Francesconi, K. A., & Feldmann, J. (2003). Metabolism of arsenic by sheep chronically exposed to arsenosugars as a normal part of their diet. 1. Quantitative intake, uptake, and excretion. Environmental Science and Technology, 37(5), 845–851.

    Article  CAS  Google Scholar 

  • Hayakawa, T., Kobayashi, Y., Cui, X., & Hirano, S. (2005). A new metabolic pathway of arsenite: Arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Archives of Toxicology, 79(4), 183–191.

    Article  CAS  Google Scholar 

  • Herrera, A., Pineda, J., & Teresa Antonio, M. (2013). Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants. Environmental Toxicology and Pharmacology, 36(1), 73–79.

    Article  CAS  Google Scholar 

  • Hou, Y., Xue, P., Woods, C. G., Wang, X., Fu, J., Yarborough, K., et al. (2013). Association between arsenic suppression of adipogenesis and induction of CHOP10 via the endoplasmic reticulum stress response. Environmental Health Perspectives, 121(2), 237–243.

    Google Scholar 

  • Hughes, M. F. (2006). Biomarkers of exposure: A case study with inorganic arsenic. Environmental Health Perspectives, 114(11), 1790–1796.

    CAS  Google Scholar 

  • Hughes, M. F., Devesa, V., Adair, B. M., Conklin, S. D., Creed, J. T., Styblo, M., et al. (2008). Tissue dosimetry, metabolism and excretion of pentavalent and trivalent dimethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology, 227(1), 26–35.

    Article  CAS  Google Scholar 

  • Hughes, M. F., Devesa, V., Adair, B. M., Styblo, M., Kenyon, E. M., & Thomas, D. J. (2005). Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology, 208(2), 186–197.

    Article  CAS  Google Scholar 

  • Islam, L. N., Nabi, A. H. M. N., Rahman, M. M., & Zahid, M. S. H. (2007). Association of respiratory complications and elevated serum immunoglobulins with drinking water arsenic toxicity in human. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering., 42(12), 1807–1814.

    Article  CAS  Google Scholar 

  • Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., et al. (2011). Arsenic: Toxicity, oxidative stress and human disease. Journal of Applied Toxicology, 31(2), 95–107.

    CAS  Google Scholar 

  • Kasperczyk, S., Dobrakowski, M., Kasperczyk, A., Zalejska-Fiolka, J., Pawlas, N., Kapka-Skrzypczak, L., & Birkner, E. (2014). Effect of treatment with N-acetylcysteine on non-enzymatic antioxidant reserves and lipid peroxidation in workers exposed to lead. Annals of agricultural and environmental medicine : AAEM., 21(2), 272–277.

    Article  Google Scholar 

  • Kim, E. J., Yoo, J. C., & Baek, K. (2014). Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environmental Pollution, 186, 29–35.

    Article  CAS  Google Scholar 

  • Kitchin, K. T., & Conolly, R. (2010). Arsenic-induced carcinogenesis-oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment. Chemical Research in Toxicology, 23(2), 327–335.

    Article  CAS  Google Scholar 

  • Koch, I., Dee, J., House, K., Sui, J., Zhang, J., McKnight-Whitford, A., & Reimer, K. J. (2013). Bioaccessibility and speciation of arsenic in country foods from contaminated sites in Canada. Science of the Total Environment, 449, 1–8.

    Article  CAS  Google Scholar 

  • Kumar, A., Malhotra, A., Nair, P., Garg, M. L., & Dhawan, D. K. (2010). Protective role of zinc in ameliorating arsenic-induced oxidative stress and histological changes in rat liver. Journal of Environmental Pathology, Toxicology and Oncology, 29(2), 91–100.

    Article  CAS  Google Scholar 

  • Li, L., Qiu, P., Chen, B., Lu, Y., Wu, K., Thakur, C., et al. (2014). Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells. Toxicology and Applied Pharmacology, 276(3), 165–170.

    Article  CAS  Google Scholar 

  • Liu, S. X., Athar, M., Lippai, I., Waldren, C., & Hei, T. K. (2001). Induction of oxyradicals by arsenic: Implication for mechanism of genotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1643–1648.

    Article  CAS  Google Scholar 

  • Liu, S., Guo, X., Zhang, X., Cui, Y., Zhang, Y., & Wu, B. (2013). Impact of iron precipitant on toxicity of arsenic in water: A combined in vivo and in vitro study. Environmental Science and Technology, 47(7), 3432–3438.

    CAS  Google Scholar 

  • Majumdar, S., Maiti, A., Karmakar, S., Das, A. S., Mukherjee, S., Das, D., & Mitra, C. (2012). Antiapoptotic efficacy of folic acid and vitamin B12 against arsenic-induced toxicity. Environmental Toxicology, 27(6), 351–363.

    Article  CAS  Google Scholar 

  • McCarty, K. M., Houseman, E. A., Quamruzzaman, Q., Rahman, M., Mahiuddin, G., Smith, T., et al. (2006). The impact of diet and betel nut use on skin lesions associated with drinking-water arsenic in Pabna, Bangladesh. Environmental Health Perspectives, 114(3), 334–340.

    Article  CAS  Google Scholar 

  • Modi, M., & Flora, S. J. S. (2007). Combined administration of iron and monoisoamyl-DMSA in the treatment of chronic arsenic intoxication in mice. Cell Biology and Toxicology, 23(6), 429–443.

    Article  CAS  Google Scholar 

  • Modi, M., Pathak, U., Kalia, K., & Flora, S. J. S. (2005). Arsenic antagonism studies with monolsoamyl DMSA and zinc in male mice. Environmental Toxicology and Pharmacology, 19(1), 131–138.

    Article  CAS  Google Scholar 

  • Molly, K., Woestyne, M. V., & Verstraete, W. (1993). Development of a 5-step multichamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology, 39(2), 254–258.

    Article  CAS  Google Scholar 

  • Moreda-Pineiro, J., Moreda-Pineiro, A., Romaris-Hortas, V., Moscoso-Perez, C., Lopez-Mahia, P., Muniategui-Lorenzo, S., et al. (2011). In-vivo and in vitro testing to assess the bioaccessibility and the bioavailability of arsenic, selenium and mercury species in food samples. Trac-Trends in Analytical Chemistry, 30(2), 324–345.

    Article  CAS  Google Scholar 

  • Muthulakshmi, S., & Saravanan, R. (2013). Protective effects of azelaic acid against high-fat diet-induced oxidative stress in liver, kidney and heart of C57BL/6J mice. Molecular and Cellular Biochemistry, 377(1–2), 23–33.

    Article  CAS  Google Scholar 

  • Naranmandura, H., Suzuki, N., & Suzuki, K. T. (2006). Trivalent arsenicals are bound to proteins during reductive methylation. Chemical Research in Toxicology, 19(8), 1010–1018.

    Article  CAS  Google Scholar 

  • Pant, N., Kumar, R., Murthy, R. C., & Srivastava, S. P. (2001). Male reproductive effect of arsenic in mice. BioMetals, 14(2), 113–117.

    Article  CAS  Google Scholar 

  • Patel, H. V., & Kalia, K. (2013). Role of hepatic and pancreatic oxidative stress in arsenic induced diabetic condition in Wistar rats. Journal of Environmental Biology, 34(2), 231–236.

    Google Scholar 

  • Raihan, S. Z., Chowdhury, A. K. A., Rabbani, G. H., Marni, F., Ali, M. S., Nahar, L., & Sarker, S. D. (2009). Effect of aqueous extracts of black and green teas in arsenic-induced toxicity in rabbits. Phytotherapy Research, 23(11), 1603–1608.

    Article  CAS  Google Scholar 

  • Ramirez, T., Garcia-Montalvo, V., Wise, C., Cea-Olivares, R., Poirier, L. A., & Herrera, L. A. (2003). S-adenosyl-l-methionine is able to reverse micronucleus formation induced by sodium arsenite and other cytoskeleton disrupting agents in cultured human cells. Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis., 528(1–2), 61–74.

    Article  CAS  Google Scholar 

  • Ramos, O., Carrizales, L., Yanez, L., Mejia, J., Batres, L., Ortiz, D., & Diazbarriga, F. (1995). Arsenic increased lipid-peroxidation in rat-tissues by a mechanism independent of glutathione levels. Environmental Health Perspectives, 103, 85–88.

    Article  CAS  Google Scholar 

  • Raposo, J., Olazabal, M. A., & Madariaga, J. M. (2006). Complexation and precipitation of arsenate and iron species in sodium perchlorate solutions at 25 degrees C. Journal of Solution Chemistry, 35(1), 79–94.

    Article  CAS  Google Scholar 

  • Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 79(933), 391–396.

    Article  CAS  Google Scholar 

  • Reddy, P. S., Rani, G. P., Sainath, S. B., Meena, R., & Supriya, C. (2011). Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice. Journal of Trace Elements in Medicine and Biology, 25(4), 247–253.

    Article  CAS  Google Scholar 

  • Rehman, K., Fu, Y. J., Zhang, Y. F., Wang, Q. Q., Wu, B., Wu, Y., et al. (2014). Trivalent methylated arsenic metabolites induce apoptosis in human myeloid leukemic HL-60 cells through generation of reactive oxygen species. Metallomics., 6(8), 1502–1512.

    Article  CAS  Google Scholar 

  • Ren, X., McHale, C. M., Skibola, C. F., Smith, A. H., Smith, M. T., & Zhang, L. (2011). An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environmental Health Perspectives, 119(1), 11–19.

    Article  CAS  Google Scholar 

  • Rodriguez, R. R., & Basta, N. T. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33(4), 642–649.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30(2), 422–430.

    Article  CAS  Google Scholar 

  • Salgueiro, M. J., Zubillaga, M., Lysionek, A., Sarabia, M. I., Caro, R., De Paoli, T., et al. (2000). Zinc as an essential micronutrient: A review. Nutrition Research., 20(5), 737–755.

    Article  CAS  Google Scholar 

  • Singh, N., Kumar, D., Lal, K., Raisuddin, S., & Sahu, A. P. (2010). Adverse health effects due to arsenic exposure: Modification by dietary supplementation of jaggery in mice. Toxicology and Applied Pharmacology, 242(3), 247–255.

    Article  CAS  Google Scholar 

  • Singh, N., Kumar, D., Raisuddin, S., & Sahu, A. P. (2008). Genotoxic effects of arsenic: Prevention by functional food-jaggery. Cancer Letters, 268(2), 325–330.

    Article  CAS  Google Scholar 

  • Singh, S., & Rana, S. V. S. (2010). Ascorbic acid improves mitochondrial function in liver of arsenic-treated rat. Toxicology and Industrial Health, 26(5), 265–272.

    Article  Google Scholar 

  • Sinha, D., Roy, S., & Roy, M. (2010). Antioxidant potential of tea reduces arsenite induced oxidative stress in Swiss albino mice. Food and Chemical Toxicology, 48(4), 1032–1039.

    Article  CAS  Google Scholar 

  • Sinha, D., Roy, M., Siddiqi, M., & Bhattacharya, R. K. (2005). Arsenic-induced micronuclei formation in mammalian cells and its counteraction by tea. Journal of Environmental Pathology, Toxicology and Oncology, 24(1), 45–56.

    Article  CAS  Google Scholar 

  • Sun, H.-J., Rathinasabapathi, B., Wu, B., Luo, J., Pu, L.-P., & Ma, L. Q. (2014). Arsenic and selenium toxicity and their interactive effects in humans. Environment International, 69, 148–158.

    Article  CAS  Google Scholar 

  • Sur-Altiner, D., & Yenice, B. (2000). Effect of black tea on lipid peroxidation in carbon tetrachloride treated male rats. Drug Metabolism and Drug Interactions, 16(2), 123–128.

    Article  CAS  Google Scholar 

  • Toujaguez, R., Ono, F. B., Martins, V., Cabrera, P. P., Blanco, A. V., Bundschuh, J., & Guilherme, L. R. G. (2013). Arsenic bioaccessibility in gold mine tailings of Delita, Cuba. Journal of Hazardous Materials., 262, 1004–1013.

    Article  CAS  Google Scholar 

  • Tseng, C. H. (2004). The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicology and Applied Pharmacology, 197(2), 67–83.

    Article  CAS  Google Scholar 

  • Tseng, C.-H. (2007). Metabolism of inorganic arsenic and non-cancerous health hazards associated with chronic exposure in humans. Journal of Environmental Biology, 28(2), 349–357.

    CAS  Google Scholar 

  • Tseng, C.-H. (2009). A review on environmental factors regulating arsenic methylation in humans. Toxicology and Applied Pharmacology, 235(3), 338–350.

    Article  CAS  Google Scholar 

  • Vahter, M. (2002). Mechanisms of arsenic biotransformation. Toxicology, 181, 211–217.

    Article  Google Scholar 

  • Van de Wiele, T., Gallawa, C. M., Kubachka, K. M., Creed, J. T., Basta, N., Dayton, E. A., et al. (2010). Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environmental Health Perspectives, 118(7), 1004–1009.

    Article  Google Scholar 

  • Wang, X., Mandal, A. K., Saito, H., Pulliam, J. F., Lee, E. Y., Ke, Z. J., et al. (2012). Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/beta-catenin signaling pathway. Toxicology and Applied Pharmacology, 262(1), 11–21.

    Article  CAS  Google Scholar 

  • Wang, X., Zhao, H., Shao, Y., Wang, P., Wei, Y., Zhang, W., et al. (2014). Nephroprotective effect of astaxanthin against trivalent inorganic arsenic-induced renal injury in wistar rats. Nutrition Research and Practice., 8(1), 46–53.

    Article  CAS  Google Scholar 

  • Watanabe, T., Ohta, Y., Mizumura, A., Kobayashi, Y., & Hirano, S. (2011). Analysis of arsenic metabolites in HepG2 and AS3MT-transfected cells. Archives of Toxicology, 85(6), 577–588.

    Article  CAS  Google Scholar 

  • Wu, J., Liu, J., Waalkes, M. P., Cheng, M.-L., Li, L., Li, C.-X., & Yang, Q. (2008). High dietary fat exacerbates arsenic-induced liver fibrosis in mice. Experimental Biology and Medicine., 233(3), 377–384.

    Article  CAS  Google Scholar 

  • Yan, W., Feng-hong, Z., & Lian-ying, G. U. O. (2009). Effects of exogenous glutathione on arsenic distribution and NO metabolism in brain of female mice exposed to sodium arsenite through drinking water. Journal of Environment and Health., 26(12), 1046–1048.

    Google Scholar 

  • You, B. R., & Park, W. H. (2012). Arsenic trioxide induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncology Reports, 28(2), 749–757.

    CAS  Google Scholar 

  • Yu, Z. M., Fung, B., Murimboh, J. D., Parker, L., & Dummer, T. J. B. (2014). What is the role of obesity in the aetiology of arsenic-related disease? Environment International, 66, 115–123.

    Article  CAS  Google Scholar 

  • Zablotska, L. B., Chen, Y., Graziano, J. H., Parvez, F., van Geen, A., Howe, G. R., & Ahsan, H. (2008). Protective effects of B vitamins and antioxidants on the risk of arsenic-related skin lesions in Bangladesh. Environmental Health Perspectives, 116(8), 1056–1062.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Jiangsu Province (BK20131270), Foundation of State Key Laboratory of Pollution Control and Resource Reuse, and Science Foundation of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Liu, S., Li, M. et al. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity. Environ Geochem Health 38, 339–351 (2016). https://doi.org/10.1007/s10653-015-9742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9742-8

Keywords

Navigation