Skip to main content
Log in

Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Concentrations of total suspended particulate matter, particulate matter with aerodynamic diameter <2.5 μm (PM2.5), particulate matter <10 μm (PM10), and fallout dust were measured at the Iranian Gol-E-Gohar Mining and Industrial Facility. Samples were characterized in terms of mineralogy, morphology, and oxidative potential. Results show that indoor samples exceeded the 24-h PM2.5 and PM10 mass concentration limits (35 and 150 µg m−3, respectively) set by the US National Ambient Air Quality Standards. Calcite, magnetite, tremolite, pyrite, talc, and clay minerals such as kaolinite, vermiculite, and illite are the major phases of the iron ore PM. Accessory minerals are quartz, dolomite, hematite, actinolite, biotite, albite, nimite, laumontite, diopside, and muscovite. The scanning electron microscope structure of fibrous-elongated minerals revealed individual fibers in the range of 1.5 nm to 71.65 µm in length and 0.2 nm to 3.7 µm in diameter. The presence of minerals related to respiratory diseases, such as talc, crystalline silica, and needle-shaped minerals like amphibole asbestos (tremolite and actinolite), strongly suggests the need for detailed health-based studies in the region. The particulate samples show low to medium oxidative potential per unit of mass, in relation to an urban road side control, being more reactive with ascorbate than with glutathione or urate. However, the PM oxidative potential per volume of air is exceptionally high, confirming that the workers are exposed to a considerable oxidative environment. PM released by iron ore mining and processing activities should be considered a potential health risk to the mine workers and nearby employees, and strategies to combat the issue are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmady-Birgani, H., Mirnejad, H., Feiznia, S., & McQueen, K. G. (2015). Mineralogy and geochemistry of atmospheric particulates in western Iran. Atmospheric Environment, 119, 262–272.

    CAS  Google Scholar 

  • Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304(1), 1–20.

    Google Scholar 

  • Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., & Moreno, T. (2009). Spatial and chemical patterns of PM 10 in road dust deposited in urban environment. Atmospheric Environment, 43(9), 1650–1659.

    CAS  Google Scholar 

  • Asadi, S., & Rajabzadeh, M. A. (2014). Geochemistry, paragenesis, and wall-rock alteration of the qatruyeh iron deposits, southwest of Iran: Implications for a hydrothermal-metasomatic genetic model. Journal of Geological Research, 2014, 590540. doi:10.1155/2014/590540.

    Article  Google Scholar 

  • Ayres, J. G., Borm, P., Cassee, F. R., Castranova, V., Donaldson, K., Ghio, A., et al. (2008). Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—A workshop report and consensus statement. Inhalation Toxicology, 20(1), 75–99.

    CAS  Google Scholar 

  • Azadeh, A., Osanloo, M., & Ataei, M. (2010). A new approach to mining method selection based on modifying the Nicholas technique. Applied Soft Computing, 10(4), 1040–1061.

    Google Scholar 

  • Babaki, A., & Aftabi, A. J. (2006). Investigation on the model of iron mineralization at Gol Gohar iron deposit, Sirjan-Kerman. Geosciences Scientific Quarterly Journal, 61, 40–59.

    Google Scholar 

  • Baker, M. A., Cerniglia, G. J., & Zaman, A. (1990). Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Analytical Biochemistry, 190(2), 360–365.

    CAS  Google Scholar 

  • Banerjee, K. K., Wang, H., & Pisaniello, D. (2006). Iron-ore dust and its health impacts. Environmental Health, 6(1), 11.

    Google Scholar 

  • Banks, D. E., & Parker, J. E. (1998). Occupational lung disease: An international perspective. London: Chapman & Hall Medical.

    Google Scholar 

  • Berndt, M. E., & Brice, W. C. (2008). The origins of public concern with taconite and human health: Reserve Mining and the asbestos case. Regulatory Toxicology and Pharmacology, 52(1), S31–S39.

    CAS  Google Scholar 

  • Bhattacharjee, P., & Paul, S. (2016). Risk of occupational exposure to asbestos, silicon and arsenic on pulmonary disorders: Understanding the genetic-epigenetic interplay and future prospects. Environmental Research, 147, 425–434.

    CAS  Google Scholar 

  • Bish, D. L. (1994). Quantitative X-ray diffraction analysis of soils. Quantitative methods in soil mineralogy, (quantitativemet), 267–295.

  • Bish, D. L., & Post, J. E. (1993). Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. The American Mineralogist, 78(9–10), 932–940.

    CAS  Google Scholar 

  • Borm, P. J. A., Kelly, F., Künzli, N., Schins, R. P. F., & Donaldson, K. (2007). Oxidant generation by particulate matter: From biologically effective dose to a promising, novel metric. Occupational and Environmental Medicine, 64(2), 73–74.

    Google Scholar 

  • Boyd, J. T., Doll, R., Faulds, J. S., & Leiper, J. (1970). Cancer of the lung in iron ore (haematite) miners. British Journal of Industrial Medicine, 27(2), 97–105.

    CAS  Google Scholar 

  • Brunner, W. M., Williams, A. N., & Bender, A. P. (2008). Investigation of exposures to commercial asbestos in northeastern Minnesota iron miners who developed mesothelioma. Regulatory Toxicology and Pharmacology, 52(1), S116–S120.

    CAS  Google Scholar 

  • Chakraborty, M. K., Ahmad, M., Singh, R. S., Pal, D., Bandopadhyay, C., & Chaulya, S. K. (2002). Determination of the emission rate from various opencast mining operations. Environmental Modelling and Software, 17(5), 467–480.

    Google Scholar 

  • Chau, N., Benamghar, L., Pham, Q. T., Teculescu, D., Rebstock, E., & Mur, J. M. (1993). Mortality of iron miners in Lorraine (France): Relations between lung function and respiratory symptoms and subsequent mortality. British Journal of Industrial Medicine, 50(11), 1017–1031.

    CAS  Google Scholar 

  • Chen, S. Y., Hayes, R. B., Liang, S. R., Li, Q. G., Stewart, P. A., & Blair, A. (1990). Mortality experience of haematite mine workers in China. British Journal of Industrial Medicine, 47(3), 175–181.

    CAS  Google Scholar 

  • Chipera, S. J., & Bish, D. L. (2013). Fitting full X-ray diffraction patterns for quantitative analysis: A method for readily quantifying crystalline and disordered phases. Advances in Materials Physics and Chemistry, 3(1A), 30340. doi:10.4236/ampc.2013.31A007.

    Article  CAS  Google Scholar 

  • Chuang, H.-C., BéruBé, K., Lung, S.-C. C., Bai, K.-J., & Jones, T. (2013). Investigation into the oxidative potential generated by the formation of particulate matter from incense combustion. Journal of Hazardous Materials, 244, 142–150.

    Google Scholar 

  • Clemente, R., Paredes, C., & Bernal, M. P. (2007). A field experiment investigating the effects of olive husk and cow manure on heavy metal availability in a contaminated calcareous soil from Murcia (Spain). Agriculture, Ecosystems & Environment, 118(1), 319–326.

    CAS  Google Scholar 

  • Csavina, J., Field, J., Taylor, M. P., Gao, S., Landázuri, A., Betterton, E. A., et al. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58–73.

    CAS  Google Scholar 

  • Davies, T. C., & Mundalamo, H. R. (2010). Environmental health impacts of dispersed mineralisation in South Africa. Journal of African Earth Sciences, 58(4), 652–666.

    CAS  Google Scholar 

  • Deer, W. A., Howie, R. A., & Zussman, J. (1992). An introduction to the rock-forming minerals (Vol. 696). London: Longman.

    Google Scholar 

  • Delfino, R. J., Staimer, N., Tjoa, T., Gillen, D. L., Schauer, J. J., & Shafer, M. M. (2013). Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel. Journal of Exposure Science & Environmental Epidemiology, 23(5), 466–473.

    CAS  Google Scholar 

  • Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hegde, V., & Deutsch, W. A. (2001). Role of free radicals in the toxicity of airborne fine particulate matter. Chemical Research in Toxicology, 14(10), 1371–1377.

    CAS  Google Scholar 

  • Eberl, D. D. (2003). User guide to RockJock-A program for determining quantitative mineralogy from X-ray diffraction data. US Geological Survey.

  • Eby, G. N. (2004). Principles of environmental geochemistry. USA:Brooks/Cole Publishing Company.

  • Ehrlich, R. I., Churchyard, G. J., Pemba, L., Dekker, K., Vermeis, M., White, N. W., et al. (2006). Tuberculosis and silica exposure in South African gold miners. Occupational and Environmental Medicine, 63(3), 187–192.

    Google Scholar 

  • EPA. (1987). Asbestos-containing materials in schools, U.S. Environmental Protection Agency. Federal Register 40CFR 763.

  • EPA. (2006). National ambient air quality standards for particulate matter; Final rule. Environmental Protection Agency Part II, 40 CFR Part 50.

  • Fantel, A. G. (1996). Reactive oxygen species in developmental toxicity: Review and hypothesis. Teratology, 53(3), 196–217.

    CAS  Google Scholar 

  • Gibbons, W. (2000). Amphibole asbestos in Africa and Australia: Geology, health hazard and mining legacy. Journal of the Geological Society, 157(4), 851–858.

    CAS  Google Scholar 

  • Godri, K. J., Duggan, S. T., Fuller, G. W., Baker, T., Green, D., Kelly, F. J., et al. (2010a). Particulate matter oxidative potential from waste transfer station activity. Environmental Health Perspectives, 118(4), 493.

    CAS  Google Scholar 

  • Godri, K. J., Green, D. C., Fuller, G. W., Dall’sOsto, M., Beddows, D. C., Kelly, F. J., et al. (2010b). Particulate oxidative burden associated with firework activity. Environmental Science and Technology, 44(21), 8295–8301.

    CAS  Google Scholar 

  • Godri, K. J., Harrison, R. M., Evans, T., Baker, T., Dunster, C., Mudway, I. S., et al. (2011). Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London. PLoS ONE, 6(7), e21961.

    CAS  Google Scholar 

  • Hendryx, M. (2009). Mortality from heart, respiratory, and kidney disease in coal mining areas of Appalachia. International Archives of Occupational and Environmental Health, 82(2), 243–249.

    Google Scholar 

  • Heydari, E. (2008). Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics, 451(1), 56–70.

    Google Scholar 

  • Hosseini, S. A., & Asghari, O. (2016). Multivariate geostatistical simulation of the Gole Gohar iron ore deposit, Iran. Journal of the Southern African Institute of Mining and Metallurgy, 116(5), 423–430.

    CAS  Google Scholar 

  • Iriyama, K., Yoshiura, M., Iwamoto, T., & Ozaki, Y. (1984). Simultaneous determination of uric and ascorbic acids in human serum by reversed-phase high-performance liquid chromatography with electrochemical detection. Analytical Biochemistry, 141(1), 238–243.

    CAS  Google Scholar 

  • Jahanshahi, R., & Zare, M. (2015). Assessment of heavy metals pollution in groundwater of Golgohar iron ore mine area, Iran. Environmental Earth Sciences, 74(1), 505–520.

    CAS  Google Scholar 

  • Janssen, N. A. H., Yang, A., Strak, M., Steenhof, M., Hellack, B., Gerlofs-Nijland, M. E., et al. (2014). Oxidative potential of particulate matter collected at sites with different source characteristics. Science of the Total Environment, 472, 572–581.

    CAS  Google Scholar 

  • Jolicoeur, C. R., Alary, J., Sokov, A. (1992). Asbestos. Kirk-Othmer Encyclopedia of Chemical Technology. doi:10.1002/0471238961.0119020510151209.a01.

    Article  Google Scholar 

  • Kamp, D. W., & Weitzman, S. A. (1999). The molecular basis of asbestos induced lung injury. Thorax, 54(7), 638–652.

    CAS  Google Scholar 

  • Kaur, H., & Halliwell, B. (1990). Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chemico-Biological Interactions, 73(2–3), 235–247.

    CAS  Google Scholar 

  • Kelly, F., Anderson, H. R., Armstrong, B., Atkinson, R., Barratt, B., Beevers, S., et al. (2011). The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Research Report (Health Effects Institute), 155, 5–71.

    Google Scholar 

  • Kinlen, L. J., & Willows, A. N. (1988). Decline in the lung cancer hazard: A prospective study of the mortality of iron ore miners in Cumbria. British Journal of Industrial Medicine, 45(4), 219–224.

    CAS  Google Scholar 

  • Klein, C., Hurlbut, C. S., & Dana, J. D. (1993). Manual of mineralogy. New York: Wiley.

    Google Scholar 

  • Klein, C., Hurlbut, C. S., & Dana, J. D. (2002). The 22nd edition of the manual of mineral science:(after James D. Dana).

  • Künzli, N., Mudway, I. S., Götschi, T., Shi, T., Kelly, F. J., Cook, S., et al. (2006). Comparison of oxidative properties, light absorbance, and total and elemental mass concentration of ambient PM 2.5 collected at 20 European sites. Environmental health perspectives, 114(5), 684–690.

    Google Scholar 

  • Lal, B., & Tripathy, S. S. (2012). Prediction of dust concentration in open cast coal mine using artificial neural network. Atmospheric Pollution Research, 3(2), 211–218.

    CAS  Google Scholar 

  • Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., et al. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111(4), 455.

    CAS  Google Scholar 

  • Liu, G., Cheresh, P., & Kamp, D. W. (2013). Molecular basis of asbestos-induced lung disease. Annual Review of Pathology, 8, 161.

    CAS  Google Scholar 

  • Love, R. G., Miller, B. G., Groat, S. K., Hagen, S., Cowie, H. A., Johnston, P. P., et al. (1997). Respiratory health effects of opencast coalmining: A cross sectional study of current workers. Occupational and Environmental Medicine, 54(6), 416–423.

    CAS  Google Scholar 

  • Mannetje, A., Steenland, K., Attfield, M., Boffetta, P., Checkoway, H., DeKlerk, N., et al. (2002). Exposure-response analysis and risk assessment for silica and silicosis mortality in a pooled analysis of six cohorts. Occupational and Environmental Medicine, 59(11), 723–728.

    Google Scholar 

  • Meyer, C., Du Plessis, J. J. L., & Oberholzer, J. W. (1996). Handbook to reduce the exposure of workers to dust. Safety in Mines Research Advisory Committee, COL 027, pp 1–157.

  • Mirnejad, H., Simonetti, A., & Molasalehi, F. (2011). Pb isotopic compositions of some Zn–Pb deposits and occurrences from Urumieh–Dokhtar and Sanandaj–Sirjan zones in Iran. Ore Geology Reviews, 39(4), 181–187.

    Google Scholar 

  • Monjezi, M., Shahriar, K., Dehghani, H., & Samimi Namin, F. (2009). Environmental impact assessment of open pit mining in Iran. Environmental Geology, 58, 205–216.

    CAS  Google Scholar 

  • Mücke, A., Golestaneh, F. (1982). The genesis of the Gol Gohar iron ore deposit (Iran). Institu fur Mineralogie und Kritallographieder Technischen Universitat Berlin, 41, 193–212.

    Google Scholar 

  • Mücke, A., & Younessi, R. (1994). Magnetite-apatite deposits (Kiruna-type) along the Sanandaj-Sirjan zone and in the Bafq area, Iran, associated with ultramafic and calcalkaline rocks and carbonatites. Mineralogy and Petrology, 50(4), 219–244.

    Google Scholar 

  • Mudway, I. S., Stenfors, N., Duggan, S. T., Roxborough, H., Zielinski, H., Marklund, S. L., et al. (2004). An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Archives of Biochemistry and Biophysics, 423(1), 200–212.

    CAS  Google Scholar 

  • Muzembo, B. A., Deguchi, Y., Ngatu, N. R., Eitoku, M., Hirota, R., & Suganuma, N. (2015). Selenium and exposure to fibrogenic mineral dust: A mini-review. Environment International, 77, 16–24.

    CAS  Google Scholar 

  • Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., & Ghaderi, M. (2015). Iron and Fe–Mn mineralisation in Iran: Implications for Tethyan metallogeny. Australian Journal of Earth Sciences, 62(2), 211–241.

    CAS  Google Scholar 

  • Nel, A. (2005). Air pollution-related illness: Effects of particles. Science, 308(5723), 804–806.

    CAS  Google Scholar 

  • Neuendorf, K. K. E. (2005). Glossary of geology. New York: Springer Science & Business Media.

    Google Scholar 

  • Noonan, C. W., Pfau, J. C., Larson, T. C., & Spence, M. R. (2006). Nested case-control study of autoimmune disease in an asbestos-exposed population. Environmental health perspectives, 114(8), 1243–1247.

    CAS  Google Scholar 

  • OSHA. (1986). Occupational Exposure to Asbestos, Tremolite, Anthophyllite, and Actinolite: Final Rules. Federal Register (Vol. 51).

  • OSHA. (1998). Occupational Safety and Health Administration, Code of Federal Regulations. 29 CFR 1910.1001.

  • Park, S. S., & Wexler, A. S. (2008). Size-dependent deposition of particles in the human lung at steady-state breathing. Journal of Aerosol Science, 39(3), 266–276.

    CAS  Google Scholar 

  • Patra, A. K., Gautam, S., & Kumar, P. (2016). Emissions and human health impact of particulate matter from surface mining operation—A review. Environmental Technology & Innovation, 5, 233–249.

    Google Scholar 

  • Petavratzi, E., Kingman, S., & Lowndes, I. (2005). Particulates from mining operations: A review of sources, effects and regulations. Minerals Engineering, 18(12), 1183–1199.

    CAS  Google Scholar 

  • Pfau, J. C., Sentissi, J. J., Weller, G., & Putnam, E. A. (2005). Assessment of autoimmune responses associated with asbestos exposure in Libby, Montana, USA. Environmental Health Perspectives, 113(1), 25–30.

    CAS  Google Scholar 

  • Phillips, J. (2013). The application of a mathematical model of sustainability to the results of a semi-quantitative environmental impact assessment of two iron ore opencast mines in Iran. Applied Mathematical Modelling, 37(14), 7839–7854.

    Google Scholar 

  • Plumlee, G. S., Morman, S. A., & Ziegler, T. L. (2006). The toxicological geochemistry of earth materials: An overview of processes and the interdisciplinary methods used to understand them. Reviews in Mineralogy and Geochemistry, 64(1), 5–57.

    CAS  Google Scholar 

  • Rietveld, H. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65–71.

    CAS  Google Scholar 

  • Ross, M., Nolan, R. P., & Nord, G. L. (2008). The search for asbestos within the Peter Mitchell Taconite iron ore mine, near Babbitt, Minnesota. Regulatory Toxicology and Pharmacology, 52(1), S43–S50.

    CAS  Google Scholar 

  • Ross, M., & Virta, R. L. (2001). Occurrence, production and uses of asbestos. Canadian Mineralogist Special Publications, 5, 79–88.

    Google Scholar 

  • Saadat, M., Khandelwal, M., & Monjezi, M. (2014). An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran. Journal of Rock Mechanics and Geotechnical Engineering, 6(1), 67–76. doi:10.1016/j.jrmge.2013.11.001.

    Article  Google Scholar 

  • Sabzehei, M., Eshraghi, S. A., Roshan Ravan, J., & Seraj, M. (1997). Geological map of Gole Gohar area, scale 1:100,000.

  • Saeidi, O., Torabi, S. R., Ataei, M., & Rostami, J. (2014). A stochastic penetration rate model for rotary drilling in surface mines. International Journal of Rock Mechanics and Mining Sciences, 68, 55–65.

    Google Scholar 

  • Sahai, N., Schoonen, M. A. A., & Skinner, H. C. W. (2006). The emergent field of medical mineralogy and geochemistry. Reviews in Mineralogy and Geochemistry, 64(1), 1–4.

    Google Scholar 

  • Shah, C. P. (2003). Public health and preventive medicine in Canada. WB Saunders Company Canada Limited.

  • Shi, T., Knaapen, A. M., Begerow, J., Birmili, W., Borm, P. J. A., & Schins, R. P. F. (2003). Temporal variation of hydroxyl radical generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occupational and Environmental Medicine, 60(5), 315–321.

    CAS  Google Scholar 

  • Singh, G., Pal, A., & Khoiyanbam, R. S. (2009). Impact of mining on human health in and around Jhansi, Bundelkhand region of Uttar Pradesh, India. Journal of Ecophysiology and Occupational Health, 9(1/2), 47.

    CAS  Google Scholar 

  • Sinha, S., & Banerjee, S. P. (1997). Characterization of haul road dust in an Indian opencast iron ore mine. Atmospheric Environment, 31(17), 2809–2814.

    CAS  Google Scholar 

  • Skinner, H. C. W., Ross, M., & Frondel, C. (1988). Asbestos and other fibrous materials: Mineralogy, crystal chemistry, and health effects. Oxford: Oxford University Press.

    Google Scholar 

  • Stafilov, T., Šajn, R., Pančevski, Z., Boev, B., Frontasyeva, M. V., & Strelkova, L. P. (2010). Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. Journal of Hazardous Materials, 175(1), 896–914.

    CAS  Google Scholar 

  • Szigeti, T., Kertész, Z., Dunster, C., Kelly, F. J., Záray, G., & Mihucz, V. G. (2014). Exposure to PM 2.5 in modern office buildings through elemental characterization and oxidative potential. Atmospheric Environment, 94, 44–52.

    CAS  Google Scholar 

  • US Public Health, & Services, U. S. D. of H. and H. (2001). Toxicological profile for asbestos. Atlanta, GA: Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • USEPA. (1999). Speciation Guidance (Final Draft). US Environmental Protection Agency: Research Triangle Park, NC.

  • USEPA. (2011). National Ambient Air Quality Standards (NAAQS). US Environmental Protection Agency: Research Triangle Park, NC. Washington, D.C.

  • Valko, M., Morris, H., & Cronin, M. T. D. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12(10), 1161–1208.

    CAS  Google Scholar 

  • Veblen, D. R., & Wylie, A. G. (1993). Mineralogy of amphiboles and 1: 1 layer silicates. Washington, DC (United States): Mineralogical Society of America.

    Google Scholar 

  • WHO. (2006). Air quality guidelines: Global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization.

  • Wild, P., Bourgkard, E., Paris, C. (2009). Lung cancer and exposure to metals: The epidemiological evidence. Cancer Epidemiology: Modifiable Factors, 472, 139–167.

    CAS  Google Scholar 

  • Williams, P. J., Barton, M. D., Johnson, D. A., Fontboté, L., De Haller, A., Mark, G., et al. (2005). Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin. Economic Geology, 100th Anniversary Volume, 371–405.

  • Wylie, A. G., & Verkouteren, J. R. (2000). Amphibole asbestos from Libby, Montana: Aspects of nomenclature. American Mineralogist, 85(10), 1540–1542.

    CAS  Google Scholar 

  • Zielinski, H., Mudway, I. S., Bérubé, K. A., Murphy, S., Richards, R., & Kelly, F. J. (1999). Modeling the interactions of particulates with epithelial lining fluid antioxidants. American Journal of Physiology-Lung Cellular and Molecular Physiology, 277(4), L719–L726.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Gol-E-Gohar mining and industrial company. The authors wish to thank Shiraz University Research Committee and medical geology research center of Shiraz University for supporting this research. AS acknowledges support from Grant 2 P42 ES04940 from the National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program, NIH and the Center for Environmentally Sustainable Mining through the TRIF Water Sustainability Program at the University of Arizona. The University Spectroscopy and Imaging Facility (USIF) at the University of Arizona is acknowledged for assistance with SEM/EDX analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naghmeh Soltani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, N., Keshavarzi, B., Sorooshian, A. et al. Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). Environ Geochem Health 40, 1785–1802 (2018). https://doi.org/10.1007/s10653-017-9926-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9926-5

Keywords

Navigation