Skip to main content

Advertisement

Log in

Impact of physiochemical properties, microbes and biochar on bioavailability of toxic elements in the soil: a review

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The pollution of toxic elements (TEs) in the ecosystem exhibits detrimental effects on the human health. In this paper, we debated remediation approaches for TEs polluted soils via immobilization methods employing numerous amendments with reverence to type of soil and metals, and amendment, immobilization competence, fundamental processes and field applicability. We argued the influence of pH, soil organic matter, textural properties, microbes, speciation and biochar on the bioavailability of TEs. All these properties of soil, microbes and biochar are imperative for effective and safe application of these methods in remediation of TEs contamination in the ecosystem. Further, the application of physiochemical properties, microbes and biochar as amendments has significant synergistic impacts not only on absorption of elements but also on diminution of toxic elements.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas, T., Rizwan, M., Ali, S., Zia-ur-Rehman, M., Qayyum, M. F., Abbas, F., & Ok, Y. S. (2017). Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicology and Environmental Safety, 140, 37–47.

    Article  CAS  Google Scholar 

  • Abdu, N., Abdullahi, A. A., & Abdulkadir, A. (2017). Heavy metals and soil microbes. Environmental Chemistry Letters, 15(1), 65–84.

    Article  CAS  Google Scholar 

  • Ahmad, I., Akhtar, M. J., Asghar, H. N., Ghafoor, U., & Shahid, M. (2016). Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. Journal of Plant Growth Regulation, 35(2), 303–315.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Lee, S. E., Al-Wabel, M. I., Tsang, D. C., & Ok, Y. S. (2017). Biocharinduced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments, 17(3), 717–730.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Yang, J. E., Ro, H. M., Lee, Y. H., & Ok, Y. S. (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety, 79, 225–231.

    Article  CAS  Google Scholar 

  • Alozie, N., Heaney, N., & Lin, C. (2018). Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids. Science of the Total Environment, 630, 1188.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Du Laing, G., & Rinklebe, J. (2017). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of environmental management, 186, 192–200.

  • Arsenov, D., Nikolić, N., Borišev, M., Župunski, M., Orlović, S., Pilipović, A., & Pajević, S. (2019). Greenhouse assessment of citric acid-assisted phytoremediation of cadmium by willows (Salix spp.)-effect on photosynthetic performances and metal tolerance. Baltic Forestry, 25(2), 203–212.

    Article  Google Scholar 

  • Arsenov, D., Župunski, M., Borišev, M., Nikolić, N., Pilipovic, A., Orlovic, S., & Pajevic, S. (2020). Citric acid as soil amendment in cadmium removal by Salix viminalis L., alterations on biometric attributes and photosynthesis. International Journal of Phytoremediation, 22(1), 29–39.

    Article  CAS  Google Scholar 

  • Bai, J., Chao, Y., Chen, Y., Wang, S., & Qiu, R. (2017). Immobilization of Cu by Bacillus subtilis DBM and the role of extracellular polymeric substances. Water, Air, & Soil Pollution, 228(3), 86.

    Article  Google Scholar 

  • Bai, J., Chao, Y., Chen, Y., Wang, S., & Qiu, R. (2019). The effect of interaction between Bacillus subtilis DBM and soil minerals on Cu (II) and Pb (II) adsorption. Journal of Environmental Sciences, 78, 328–337.

    Article  CAS  Google Scholar 

  • Bandara, T., Franks, A., Xu, J., Bolan, N., Wang, H., & Tang, C. (2020). Chemical and biological immobilization mechanisms of potentially toxic elements in biochar-amended soils. Critical Reviews in Environmental Science and Technology, 50(9), 903–978.

    Article  CAS  Google Scholar 

  • Behera, S. K., & Shukla, A. K. (2015). Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degradation & Development, 26, 71–79.

    Article  Google Scholar 

  • Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S., & Glick, B. R. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 37(2), 241–250.

    Article  CAS  Google Scholar 

  • Bhatti, S. S., Sambyal, V., & Nagpal, A. K. (2018). Analysis of genotoxicity of agricultural soils and metal (Fe, Mn, and Zn) accumulation in crops. International Journal of Environmental Research, 12(4), 439–449.

    Article  CAS  Google Scholar 

  • Cai, T., Liu, X., Zhang, J., Tie, B., Lei, M., Wei, X., & Du, H. (2021). Silicate-modified oiltea camellia shell-derived biochar: A novel and cost-effective sorbent for cadmium removal. Journal of Cleaner Production, 281, 125390.

    Article  CAS  Google Scholar 

  • Campos, J. A., Esbrí, J. M., Madrid, M. M., Naharro, R., Peco, J., García-Noguero, E. M., & Higueras, P. (2018). Does mercury presence in soils promote their microbial activity? The Almadenejos case (Almadén mercury mining district, Spain). Chemosphere, 201, 799–806.

    Article  CAS  Google Scholar 

  • Chagas, J. K. M., Figueiredo, C. C. D., Silva, J. D., Shah, K., & Paz-Ferreiro, J. (2021). Long-term effects of sewage sludge–derived biochar on the accumulation and availability of trace elements in a tropical soil. Journal of Environmental Quality, 50(1), 264–277.

    Article  CAS  Google Scholar 

  • Chen, T., Chang, Q., Liu, J., Clevers, J. G. P. W., & Kooistra, L. (2016a). Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Science of the Total Environment, 565, 155–164.

    Article  CAS  Google Scholar 

  • Chen, Y. M., Gao, J. B., Yuan, Y. Q., Ma, J., & Yu, S. (2016b). Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment. Continental Shelf Research, 124, 125–133.

    Article  Google Scholar 

  • Chen, Z., Pei, J., Wei, Z., Ruan, X., Hua, Y., Xu, W., Zhang, C., Liu, T., & Guo, Y. (2021). A novel maize biochar-based compound fertilizer for immobilizing cadmium and improving soil quality and maize growth. Environmental Pollution, 277, 16455.

    Article  Google Scholar 

  • Cui, H., Ma, K., Fan, Y., Peng, X., Mao, J., Zhou, D., Zhang, Z., & Zhou, J. (2016). Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-016-6271-7

    Article  Google Scholar 

  • Cui, J. L., Zhao, Y. P., Chan, T. S., Zhang, L. L., Tsang, D. C., & Li, X. D. (2020). Spatial distribution and molecular speciation of copper in indigenous plants from contaminated mine sites: Implication for phytostabilization. Journal of Hazardous Materials, 381, 121208.

    Article  CAS  Google Scholar 

  • Cui, X. D., Wang, Y. J., Hockmann, K., & Zhou, D. M. (2015). Effect of iron plaque on antimony uptake by rice (Oryza sativa L.). Environmental Pollution, 204, 133–140.

    Article  CAS  Google Scholar 

  • Dey, S., & Paul, A. K. (2016). Evaluation of chromate reductase activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. Chemosphere, 156, 69–75.

    Article  CAS  Google Scholar 

  • Dogra, N., Sharma, M., Sharma, A., Keshavarzi, A., Minakshi, B., & BhardwajKumar, R. V. (2020). Pollution assessment and spatial distribution of roadside agricultural soils: A case study from India. International Journal of Environmental Health Research, 30(2), 146–159.

    Article  CAS  Google Scholar 

  • Drahoňovský, J., Száková, J., Mestek, O., Tremlová, J., Kaňa, A., Najmanová, J., & Tlustoš, P. (2016). Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environmental and Experimental Botany, 125, 12–19.

    Article  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407(13), 3972–3985.

    Article  Google Scholar 

  • El-Naggar, A., Shaheen, S. M., Hseu, Z. Y., Wang, S. L., Ok, Y. S., & Rinklebe, J. (2019). Release dynamics of As Co, and Mo in a biochar treated soil under pre-definite redox conditions. Science of the Total Environment, 657, 686–695.

    Article  CAS  Google Scholar 

  • El-Naggar, A., Shaheen, S. M., Ok, Y. S., & Rinklebe, J. (2018). Biochar affects the dissolved and colloidal concentrations of Cd, Cu, Ni, and Zn and their phytoavailability and potential mobility in a mining soil under dynamic redox-conditions. Science of the Total Environment, 624, 1059–1071.

    Article  CAS  Google Scholar 

  • Ensley, B. D. (2000). Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley.

    Google Scholar 

  • Epelde, L., Becerril, J. M., Barrutia, O., Gonzalez-Oreja, J. A., & Garbisu, C. (2010). Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environmental Pollution, 158(5), 1576–1583.

    Article  CAS  Google Scholar 

  • European Environmental Agency (EEA). (2007). http://ec.europa.eu/environment/emas/pdf/es_library/99_dk_european_environment_agency_08.pdf.

  • Fan, J., Cai, C., Chi, H., Reid, B. J., Coulon, F., Zhang, Y., & Hou, Y. (2020). Remediation of cadmium and lead polluted soil using thiol-modified biochar. Journal of Hazardous Materials, 388, 22037.

    Article  Google Scholar 

  • Fernandes, L., Nayak, G. N., Ilangovan, D., & Borole, D. V. (2011). Accumulation of sediment, organic matter and trace metals with space and time, in a creek along Mumbai coast, India. Estuarine, Coastal and Shelf Science, 91(3), 388–399.

    Article  CAS  Google Scholar 

  • Gonzalez-Raymat, H., Liu, G., Liriano, C., Li, Y., Yin, Y., Shi, J., & Cai, Y. (2017). Elemental mercury: Its unique properties affect its behavior and fate in the environment. Environmental Pollution, 229, 69–86.

    Article  CAS  Google Scholar 

  • Guven, D. E., & Akinci, G. (2013). Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay. Journal of Environmental Sciences, 25(9), 1784–1794.

    Article  CAS  Google Scholar 

  • Haghnazar, H., Hudson-Edwards, K. A., Kumar, V., Pourakbar, M., Mahdavianpour, M., & Aghayani, E. (2021). Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere, 285, 131446.

    Article  CAS  Google Scholar 

  • Haghnazar, H., Pourakbar, M., Mahdavianpour, M., & Aghayani, E. (2021b). Spatial distribution and risk assessment of agricultural soil pollution by hazardous elements in a transboundary river basin. Environmental Monitoring and Assessment, 193(4), 1–17.

    Article  Google Scholar 

  • Hammel, W., Debus, R., & Steubing, L. (2000). Mobility of antimony in soil and its availability to plants. Chemosphere, 41(11), 1791–1798.

    Article  CAS  Google Scholar 

  • Harris, J. (2009). Soil microbial communities and restoration ecology: Facilitators or followers? Science, 325(5940), 573–574.

    Article  CAS  Google Scholar 

  • Harris-Hellal, J., Vallaeys, T., Garnier-Zarli, E., & Bousserrhine, N. (2009). Effects of mercury on soil microbial communities in tropical soils of French Guyana. Applied Soil Ecology, 41(1), 59–68.

    Article  Google Scholar 

  • Hattab, N., Motelica-Heino, M., Faure, O., & Bouchardon, J. L. (2015). Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. Journal of Environmental Management, 159, 37–47.

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak, B., Matraszek, R., & Pogorzelec, M. (2015). The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiologiae Plantarum, 37(2), 41.

    Article  Google Scholar 

  • He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846–855.

    Article  CAS  Google Scholar 

  • Heidari, A., Kumar, V., & Keshavarzi, A. (2019). Appraisal of metallic pollution and ecological risks in agricultural soils of Alborz province, Iran, employing contamination indices and multivariate statistical analyses. International Journal Of Environmental Health Research. https://doi.org/10.1080/09603123.2019.1677864

    Article  Google Scholar 

  • Hong, S. W., Kim, H. S., & Chung, T. H. (2010). Alteration of sediment organic matter in sediment microbial fuel cells. Environmental Pollution, 158(1), 185–191.

    Article  CAS  Google Scholar 

  • Hou, D., He, J., Lü, C., Ren, L., Fan, Q., Wang, J., & Xie, Z. (2013). Distribution characteristics and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd) in water and sediments from Lake Dalinouer, China. Ecotoxicology and Environmental Safety, 93, 135–144.

    Article  CAS  Google Scholar 

  • Hou, D., & Ok, Y. S. (2019). Soil pollution-speed up global mapping. Nature, 566(7745), 455–456.

    Article  CAS  Google Scholar 

  • Hou, S., Zheng, N., Tang, L., Ji, X., & Li, Y. (2019). Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environmental monitoring and assessment, 191(10), 1–10.

    Article  CAS  Google Scholar 

  • Houben, D., & Sonnet, P. (2015). Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere, 139, 644–651.

    Article  CAS  Google Scholar 

  • Hu, X., He, M., Li, S., & Guo, X. (2017). The leaching characteristics and changes in the leached layer of antimony-bearing ores from China. Journal of Geochemical Exploration, 176, 76–84.

    Article  CAS  Google Scholar 

  • Huang, B., Yuan, Z., Li, D., Zheng, M., Nie, X., & Liao, Y. (2020). Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal (loid) s in soil: A review. Environmental Science: Processes & Impacts, 22(8), 1596–1615.

    CAS  Google Scholar 

  • Igalavithana, A. D., Park, J., Ryu, C., Lee, Y. H., Hashimoto, Y., Huang, L., & Lee, S. S. (2017). Slow pyrolyzed biochars from crop residues for soil metal (loid) immobilization and microbial community abundance in contaminated agricultural soils. Chemosphere, 177, 157–166.

    Article  CAS  Google Scholar 

  • Jastrow, J. D. (1996). Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 28(4–5), 665–676.

    Article  CAS  Google Scholar 

  • Jensen, J. K., Holm, P. E., Nejrup, J., Larsen, M. B., & Borggaard, O. K. (2009). The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environmental Pollution, 157, 931–937.

    Article  CAS  Google Scholar 

  • Jia, Q., Zhu, X., Hao, Y., Yang, Z., Wang, Q., Fu, H., & Yu, H. (2018). Mercury in soil, vegetable and human hair in a typical mining area in China: Implication for human exposure. Journal of Environmental Sciences, 68, 73–82.

    Article  CAS  Google Scholar 

  • Joutey, N. T., Bahafid, W., Sayel, H., Nassef, S., & El Ghachtouli, N. (2016). Leucobacter chromiireducens CRB2, a new strain with high Cr (VI) reduction potential isolated from tannery-contaminated soil (Fez, Morocco). Annals of Microbiology, 66(1), 425–436.

    Article  Google Scholar 

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). CRC Press.

    Google Scholar 

  • Kalbitz, K., & Wennrich, R. (1998). Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter. Science of the Total Environment, 209(1), 27–39.

    Article  CAS  Google Scholar 

  • Keshavarzi, A., & Kumar, V. (2020). Spatial distribution and potential ecological risk assessment of heavy metals in agricultural soils of Northeastern Iran. Geology, Ecology, and Landscapes, 4(2), 87–103.

    Article  Google Scholar 

  • Keshavarzi, A., Kumar, V., Ertunç, G., & Brevik, E. C. (2021). Ecological risk assessment and source apportionment of heavy metals contamination: An appraisal based on the Tellus soil survey. Environmental Geochemistry and Health, 43(5), 2121–2142.

    Article  CAS  Google Scholar 

  • Khaledian, Y., Pereira, P., Brevik, E. C., Pundyte, N., & Paliulis, D. (2017). The influence of organic carbon and pH on heavy metals, potassium, and magnesium levels in Lithuanian Podzols. Land Degradation & Development, 28(1), 345–354.

    Article  Google Scholar 

  • Khan, K. Y., Ali, B., Cui, X., Feng, Y., Yang, X., & Stoffella, P. J. (2017). Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Ecotoxicology and Environmental Safety, 141, 129–138.

    Article  CAS  Google Scholar 

  • Kim, H. B., Kim, S. H., Jeon, E. K., Kim, D. H., Tsang, D. C., Alessi, D. S., & Baek, K. (2018). Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Science of the Total Environment, 636, 1241–1248.

    Article  CAS  Google Scholar 

  • Kim, R. Y., Yoon, J. K., Kim, T. S., Yang, J. E., Owens, G., & Kim, K. R. (2015). Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environmental Geochemistry and Health, 37(6), 1041–1061.

    Article  CAS  Google Scholar 

  • Kumar, V., Pandita, S., Sidhu, G. P. S., Sharma, A., Khanna, K., Kaur, P., & Setia, R. (2020). Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere, 262, 127810.

    Article  Google Scholar 

  • Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Sidhu, G. P. S., Bali, A. S., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236, 124364.

    Article  CAS  Google Scholar 

  • Kumar, V., Sharma, A., & Cerdà, A. (2020). Heavy metals in the environment. Elsevier.

    Google Scholar 

  • Kumar, V., Sharma, A., Chawla, A., Bhardwaj, R., & Thukral, A. K. (2016). Water quality assessment of river Beas, India, using multivariate and remote sensing techniques. Environmental Monitoring and Assessment, 188(3), 137.

    Article  Google Scholar 

  • Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., & Cerda, A. (2019b). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449–462.

    Article  CAS  Google Scholar 

  • Kumar, V., Sharma, A., Kumar, R., Bhardwaj, R., Kumar Thukral, A., & Rodrigo-Comino, J. (2020c). Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Human and Ecological Risk Assessment: An International Journal, 26(1), 1–16.

    Article  CAS  Google Scholar 

  • Kwiatkowska-Malina, J. (2018). Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals. Applied Soil Ecology, 123, 542–545.

    Article  Google Scholar 

  • Lafuente, A. L., González, C., Quintana, J. R., Vázquez, A., & Romero, A. (2008). Mobility of heavy metals in poorly developed carbonate soils in the Mediterranean region. Geoderma, 145(3–4), 238–244.

    Article  CAS  Google Scholar 

  • Lee, S. Y., Kim, E. G., Park, J. R., Ryu, Y. H., Moon, W., Park, G. H., & Kim, K. M. (2021). Effect on chemical and physical properties of soil each peat moss, elemental sulfur, and sulfur-oxidizing bacteria. Plants, 10(9), 1901.

    Article  CAS  Google Scholar 

  • Lévêque, T., Capowiez, Y., Schreck, E., Mombo, S., Mazzia, C., Foucault, Y., & Dumat, C. (2015). Effects of historic metal (loid) pollution on earthworm communities. Science of the Total Environment, 511, 738–746.

    Article  Google Scholar 

  • Li, L., Zou, D., Xiao, Z., Zeng, X., Zhang, L., Jiang, L., Wang, A., Ge, D., Zhang, G., & Liu, F. (2019). Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use. Journal of Cleaner Production, 210, 1324–1342.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  Google Scholar 

  • Lintschinger, J., Schramel, O., & Kettrup, A. (1998). The analysis of antimony species by using ESI-MS and HPLC-ICP-MS. Fresenius’ Journal of Analytical Chemistry, 361(2), 96–102.

    Article  CAS  Google Scholar 

  • Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219.

    Article  CAS  Google Scholar 

  • Liu, X., Wu, G., Zhang, Y., Wu, D., Li, X., & Liu, P. (2015). Chromate reductase YieF from Escherichia coli enhances hexavalent chromium resistance of human HepG2 cells. International Journal of Molecular Sciences, 16(6), 11892–11902.

    Article  CAS  Google Scholar 

  • Loganathan, P., Vigneswaran, S., Kandasamy, J., & Naidu, R. (2012). Cadmium sorption and desorption in soils: A review. Critical Reviews in Environmental Science and Technology, 42(5), 489–533.

    Article  CAS  Google Scholar 

  • Long, L. K., Yao, Q., Guo, J., Yang, R. H., Huang, Y. H., & Zhu, H. H. (2010). Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. European Journal of Soil Biology, 46(5), 288–294.

    Article  Google Scholar 

  • Mala, J. G. S., Sujatha, D., & Rose, C. (2015). Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiological Research, 170, 235–241.

    Article  Google Scholar 

  • Manzano, R., Diquattro, S., Roggero, P. P., Pinna, M. V., Garau, G., & Castaldi, P. (2020). Addition of softwood biochar to contaminated soils decreases the mobility, leachability and bioaccesibility of potentially toxic elements. Science of The Total Environment, 739, 139946.

    Article  CAS  Google Scholar 

  • Markelova, E., Couture, R. M., Parsons, C. T., Markelov, I., Madé, B., Van Cappellen, P., & Charlet, L. (2018). Speciation dynamics of oxyanion contaminants (As, Sb, Cr) in argillaceous suspensions during oxic-anoxic cycles. Applied Geochemistry, 91, 75–88.

    Article  CAS  Google Scholar 

  • Matos, R. P., Lima, V. M., Windmöller, C. C., & Nascentes, C. C. (2017). Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil. Journal of Geochemical Exploration, 172, 195–202.

    Article  CAS  Google Scholar 

  • Meier, S., Curaqueo, G., Khan, N., Bolan, N., Cea, M., Eugenia, G. M., & Borie, F. (2017). Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. Journal of Soils and Sediments, 17(3), 741–750.

    Article  CAS  Google Scholar 

  • Melo, L. C., Puga, A. P., Coscione, A. R., Beesley, L., De Abreu, C. A., & De Camargo, O. A. (2016). Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar. Journal of Soils and Sediments, 16(1), 226–234.

    Article  Google Scholar 

  • Moghtaderi, T., Alamdar, R., Rodríguez-Seijo, A., Naghibi, S. J., & Kumar, V. (2020). Ecological risk assessment and source apportionment of heavy metal contamination in urban soils in Shiraz, Southwest Iran. Arabian Journal of Geosciences, 13(16), 1–12.

    Article  Google Scholar 

  • Muhammad, N., Nafees, M., Khan, M. H., Ge, L., & Lisak, G. (2020). Effect of biochars on bioaccumulation and human health risks of potentially toxic elements in wheat (Triticum aestivum L.) cultivated on industrially contaminated soil. Environmental Pollution, 260, 113887.

    Article  CAS  Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54(4), 655–670.

    Article  Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2017). Microbial diversity and soil functions. European Journal of Soil Science, 68(1), 12–26.

  • Navarro-Pedreño, J., Almendro-Candel, M. B., Gómez Lucas, I., Jordán Vidal, M. M., Bech Borras, J., & Zorpas, A. A. (2018). Trace metal content and availability of essential metals in agricultural soils of alicante (spain). Sustainability, 10(12), 4534.

    Article  Google Scholar 

  • Nie, C., Yang, X., Niazi, N. K., Xu, X., Wen, Y., Rinklebe, J., & Wang, H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere, 200, 274–282.

    Article  CAS  Google Scholar 

  • Norini, M. P., Thouin, H., Miard, F., Battaglia-Brunet, F., Gautret, P., Guégan, R., & Motelica-Heino, M. (2019). Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. Journal of Environmental Management, 232, 117–130.

    Article  CAS  Google Scholar 

  • O’connor, D., Peng, T., Zhang, J., Tsang, D. C., Alessi, D. S., Shen, Z., Bolan, N. S., & Hou, D. (2018). Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 619, 815–826.

    Article  Google Scholar 

  • Palansooriya, K. N., Ok, Y. S., Awad, Y. M., Lee, S. S., Sung, J. K., Koutsospyros, A., & Moon, D. H. (2019a). Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management, 234, 52–64.

    Article  CAS  Google Scholar 

  • Palansooriya, K. N., Shaheen, S. M., Chen, S. S., Tsang, D. C., Hashimoto, Y., Hou, D., & Ok, Y. S. (2020). Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environment international, 134, 105046.

    Article  CAS  Google Scholar 

  • Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., & Ok, Y. S. (2019b). Response of microbial communities to biochar-amended soils: A critical review. Biochar, 1(1), 3–22.

    Article  Google Scholar 

  • Pandit, P., Mangala, P., Saini, A., Bangotra, P., Kumar, V., Mehra, R., & Ghosh, D. (2020). Radiological and pollution risk assessments of terrestrial radionuclides and heavy metals in a mineralized zone of the siwalik region (India). Chemosphere, 254, 126857.

    Article  CAS  Google Scholar 

  • Paris, O. J., Swaddle, J. P., & Cristol, D. A. (2018). Exposure to dietary methyl-mercury solely during embryonic and juvenile development halves subsequent reproductive success in adult zebra finches. Environmental Science & Technology, 52(5), 3117–3124.

    Article  CAS  Google Scholar 

  • Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348(1), 439–451.

    Article  CAS  Google Scholar 

  • Peng, J. F., Song, Y. H., Yuan, P., Cui, X. Y., & Qiu, G. L. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161(2–3), 633–640.

    Article  CAS  Google Scholar 

  • Pierart, A., Dumat, C., Maes, A. Q., Roux, C., & Sejalon-Delmas, N. (2018b). Opportunities and risks of biofertilization for leek production in urban areas: Influence on both fungal diversity and human bioaccessibility of inorganic pollutants. Science of the Total Environment, 624, 1140–1151.

    Article  CAS  Google Scholar 

  • Pierart, A., Dumat, C., Maes, A. Q., & Sejalon-Delmas, N. (2018a). Influence of arbuscular mycorrhizal fungi on antimony phyto-uptake and compartmentation in vegetables cultivated in urban gardens. Chemosphere, 191, 272–279.

    Article  CAS  Google Scholar 

  • Qi, F., Lamb, D., Naidu, R., Bolan, N. S., Yan, Y., Ok, Y. S., & Choppala, G. (2018). Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Science of the Total Environment, 610, 1457–1466.

    Article  Google Scholar 

  • Qian, J., Wei, L., Liu, R., Jiang, F., Hao, X., & Chen, G. H. (2016). An exploratory study on the pathways of Cr (VI) reduction in sulfate-reducing up-flow anaerobic sludge bed (UASB) reactor. Scientific Reports, 6(1), 1–12.

    Google Scholar 

  • Radziemska, M., Gusiatin, Z. M., Cydzik-Kwiatkowska, A., Cerdà, A., Pecina, V., Bęś, A., Datta, R., Majewski, G., Mazur, Z., Dzięcioł, J., Danish, S., & Brtnicky, M. (2021). Insight into metal immobilization and microbial community structure in soil from a steel disposal dump that was phytostabilized with composted, pyrolyzed or gasified wastes. Chemosphere, 272, 129576.

    Article  CAS  Google Scholar 

  • Ran, Z. H. A. O., Bi, W. A. N. G., Cai, Q. T., Li, X. X., Min, L. I. U., Dong, H. U., & Chun, F. A. N. (2016). Bioremediation of hexavalent chromium pollution by Sporosarcina saromensis M52 isolated from offshore sediments in Xiamen China. Biomedical and Environmental Sciences, 29(2), 127–136.

    Google Scholar 

  • Rehman, M. Z. U., Rizwan, M., Ali, S., Fatima, N., Yousaf, B., Naeem, A., & Ok, Y. S. (2016). Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicology and Environmental Safety, 133, 218–225.

    Article  Google Scholar 

  • Rodrigo-Comino, J., López-Vicente, M., Kumar, V., Rodríguez-Seijo, A., Valkó, O., Rojas, C., & Panagos, P. (2020). Soil science challenges in a new era: A transdisciplinary overview of relevant topics. Air, Soil and Water Research, 13, 1178622120977491.

    Article  Google Scholar 

  • Sadeghi, S. H. R., Harchegani, M. K., & Younesi, H. A. (2012). Suspended sediment concentration and particle size distribution, and their relationship with heavy metal content. Journal of Earth System Science, 121(1), 63–71.

    Article  CAS  Google Scholar 

  • Saeedi, M., Li, L. Y., Karbassi, A. R., & Zanjani, A. J. (2013). Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environmental Monitoring and Assessment, 185(2), 1737–1754.

    Article  CAS  Google Scholar 

  • Salam, M. A., Paul, S. C., Noor, S. N. B. M., Siddiqua, S. A., Aka, T. D., Wahab, R., & Aweng, E. R. (2019). Contamination profile of heavy metals in marine fish and shellfish. Global Journal of Environmental Science and Management, 5(2), 225–236.

  • Setia, R., Dhaliwal, S. S., Singh, R., Kumar, V., Taneja, S., Kukal, S. S., & Pateriya, B. (2021). Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej River India. Chemosphere, 263, 128321.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., El-Naggar, A., Wang, J., Hassan, N. E., Niazi, N. K., Wang, H., & Rinklebe, J. (2019). Biochar as an (Im) mobilizing agent for the potentially toxic elements in contaminated soils. In Biochar from biomass and waste (pp. 255–274). Elsevier.

  • Shahid, M., Dumat, C., Khalid, S., Niazi, N. K., & Antunes, P. M. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Reviews of Environmental Contamination and Toxicology, 241, 73–137.

    Google Scholar 

  • Shakoor, M., Niazi, N., Bibi, I., Rahman, M., Naidu, R., Dong, Z., Shahid, M., & Arshad, M. (2015). Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. International Journal of Environmental Research and Public Health, 12, 12371–12390.

    Article  CAS  Google Scholar 

  • Shakoor, M. B., Niazi, N. K., Bibi, I., Shahid, M., Saqib, Z. A., Nawaz, M. F., & Rinklebe, J. (2019). Exploring the arsenic removal potential of various biosorbents from water. Environment International, 123, 567–579.

    Article  CAS  Google Scholar 

  • Shamshad, S., Shahid, M., Rafiq, M., Khalid, S., Dumat, C., Sabir, M., & Shah, N. S. (2018). Effect of organic amendments on cadmium stress to pea: A multivariate comparison of germinating vs young seedlings and younger vs older leaves. Ecotoxicology and Environmental Safety, 151, 91–97.

    Article  CAS  Google Scholar 

  • Shen, X., Zeng, J., Zhang, D., Wang, F., Li, Y., & Yi, W. (2020). Effect of pyrolysis temperature on characteristics, chemical speciation and environmental risk of Cr, Mn, Cu, and Zn in biochars derived from pig manure. The Science of the Total Environment, 704, 135283.

    Article  CAS  Google Scholar 

  • Sherene, T. (2009). Effect of dissolved organic carbon (DOC) on heavy metal mobility in soils. Nature Environment and Pollution Technology, 8(4), 817–821.

    CAS  Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking water by arsenic in Bangladesh: A public health emergency. Bulletin of the World Health Organization, 78, 1093–1103.

    CAS  Google Scholar 

  • Sun, C., Wang, D., Shen, X., Li, C., Liu, J., Lan, T., Wang, W., Xie, H., & Zhang, Y. (2020). Effects of biochar, compost and straw input on root exudation of maize (Zea mays L.): From function to morphology. Agriculture, Ecosystems & Environment., 297, 106952.

    Article  CAS  Google Scholar 

  • Sungur, A., Soylak, M., & Ozcan, H. (2014). Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability. Chemical Speciation & Bioavailability, 26(4), 219–230.

    Article  Google Scholar 

  • Sutherland, T. F., Petersen, S. A., Levings, C. D., & Martin, A. J. (2007). Distinguishing between natural and aquaculture-derived sediment concentrations of heavy metals in the Broughton Archipelago, British Columbia. Marine Pollution Bulletin, 54(9), 1451–1460.

    Article  CAS  Google Scholar 

  • Tazisong, I. A., Senwo, Z. N., & Williams, M. I. (2012). Mercury speciation and effects on soil microbial activities. Journal of Environmental Science and Health, Part A, 47(6), 854–862.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Chang, S. C., & Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials, 190(1), 432–441.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere, 80(8), 935–940.

    Article  CAS  Google Scholar 

  • Venegas, A., Rigol, A., & Vidal, M. (2015). Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere, 119, 190–198.

    Article  CAS  Google Scholar 

  • Wang, A. O., Ptacek, C. J., Blowes, D. W., Gibson, B. D., Landis, R. C., Dyer, J. A., & Ma, J. (2019a). Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments. Science of the Total Environment, 652, 549–561.

    Article  Google Scholar 

  • Wang, J., Shi, L., Zhai, L., Zhang, H., Wang, S., Zoud, J., Shen, Z., Lian, C., & Chen, Y. (2021). Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Ecotoxicology and Environmental Safety., 207, 111261.

    Article  CAS  Google Scholar 

  • Wang, Y., Dang, F., Zheng, X., & Zhong, H. (2019b). Biochar amendment to further reduce methylmercury accumulation in rice grown in selenium-amended paddy soil. Journal of Hazardous Materials, 365, 590–596.

    Article  CAS  Google Scholar 

  • Wei, B., Yu, J., Cao, Z., Meng, M., Yang, L., & Chen, Q. (2020). The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. International Journal of Environmental Research and Public Health, 17(15), 5359.

    Article  CAS  Google Scholar 

  • Wei, C., Ge, Z., Chu, W., & Feng, R. (2015). Speciation of antimony and arsenic in the soils and plants in an old antimony mine. Environmental and Experimental Botany, 109, 31–39.

    Article  CAS  Google Scholar 

  • Wei, Y., Su, Q., Sun, Z., Shen, Y., Li, J., Zhu, X., & Wu, F. C. (2016). The role of arbuscular mycorrhizal fungi in plant uptake, fractions, and speciation of antimony. Applied Soil Ecology, 107, 244–250.

    Article  Google Scholar 

  • WHO (2016). News Release, Geneva, http://www.who.int/news-room/detail/15-03–2016-an-estimated-12–6-million-deaths-each-year-are-attributable-to-unhealthyenvironments.

  • WHO (2018). Lead poisoning and health. http://www.who.int/en/news-room/fact-sheets/detail/lead-poisoning-and-health.

  • Wood, P. J., & Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management, 21(2), 203–217.

    Article  CAS  Google Scholar 

  • Wu, S., Zhang, X., Sun, Y., Wu, Z., Li, T., Hu, Y., & Chen, B. (2016). Chromium immobilization by extra-and intraradical fungal structures of arbuscular mycorrhizal symbioses. Journal of Hazardous Materials, 316, 34–42.

    Article  CAS  Google Scholar 

  • Wuana, R. A., & Okieimen, F.E. (2011). HeavyMetals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network, 2011. https://doi.org/10.5402/2011/402647

  • Xie, S., Yu, G., Ma, J., Wang, G., Wang, Q., You, F., & Li, C. (2020). Chemical speciation and distribution of potentially toxic elements in soilless cultivation of cucumber with sewage sludge biochar addition. Environmental Research., 191, 110188.

    Article  CAS  Google Scholar 

  • Xiong, J., He, Z., Liu, D., Mahmood, Q., & Yang, X. (2008). The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium. Chemosphere, 70(3), 489–494.

    Article  CAS  Google Scholar 

  • Xu, J., Buck, M., Eklöf, K., Ahmed, O. O., Schaefer, J. K., Bishop, K., & Bravo, A. G. (2019). Mercury methylating microbial communities of boreal forest soils. Scientific Reports, 9(1), 1–13.

    Google Scholar 

  • Yan, X., Liu, M., Zhong, J., Guo, J., & Wu, W. (2018). How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe River Delta, North China. Sustainability, 10(2), 338.

    Article  Google Scholar 

  • Yang, X., Lu, K., McGrouther, K., Che, L., Hu, G., Wang, Q., & Wang, H. (2017). Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. Journal of Soils and Sediments, 17(3), 751–762.

    Article  CAS  Google Scholar 

  • Yoo, J. C., Beiyuan, J., Wang, L., Tsang, D. C., Baek, K., Bolan, N. S., & Li, X. D. (2018). A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Science of the Total Environment, 616, 572–582.

    Article  Google Scholar 

  • Yu, H. Y., Liu, C., Zhu, J., Li, F., Deng, D. M., Wang, Q., & Liu, C. (2016). Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value. Environmental Pollution, 209, 38–45.

    Article  CAS  Google Scholar 

  • Yuan, X., Xiong, T., Wang, H., Wu, Z., Jiang, L., Zeng, G., & Li, Y. (2018). Immobilization of heavy metals in two contaminated soils using a modified magnesium silicate stabilizer. Environmental Science and Pollution Research, 25(32), 32562–32571.

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91.

    Article  CAS  Google Scholar 

  • Zeng, J., Gou, M., Tang, Y. Q., Li, G. Y., Sun, Z. Y., & Kida, K. (2016). Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresource Technology, 218, 859–866.

    Article  CAS  Google Scholar 

  • Zhang, J., Wu, S., Xu, Z., Wang, M., Man, Y. B., Christie, P., & Wong, M. H. (2019). The role of sewage sludge biochar in methylmercury formation and accumulation in rice. Chemosphere, 218, 527–533.

    Article  CAS  Google Scholar 

  • Zhang, L., Yang, Q., Wang, S., Li, W., Jiang, S., & Liu, Y. (2017). Influence of silicon treatment on antimony uptake and translocation in rice genotypes with different radial oxygen loss. Ecotoxicology and Environmental Safety, 144, 572–577.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

VK and MR design the concept and wrote the whole manuscript. Both authors approved the final manuscript.

Corresponding author

Correspondence to Vinod Kumar.

Ethics declarations

Conflict of interest

There is no conflict among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Radziemska, M. Impact of physiochemical properties, microbes and biochar on bioavailability of toxic elements in the soil: a review. Environ Geochem Health 44, 3725–3742 (2022). https://doi.org/10.1007/s10653-021-01157-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01157-w

Keywords

Navigation