Skip to main content
Log in

Phylogenetic investigations in the genus Pseudoperonospora reveal overlooked species and cryptic diversity in the P. cubensis species cluster

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Pseudoperonospora cubensis is one of the most devastating diseases of cucurbitaceous crops. The pathogen has a worldwide distribution and occurs in all major cucurbit growing areas. It had been noticed for the first time at the end of the 19th century, but it became a globally severe disease as recently as 1984 in Europe and 2004 in North America. Despite its economic importance, species concepts in Pseudoperonospora are debated. Here, we report that the genus Pseudoperonospora contains cryptic species distinct from the currently accepted ones. Pseudoperonospora on Celtis is split into two phylogenetic lineages and Pseudoperonospora humuli is confirmed as a species distinct from the Cucurbitaceae-infecting lineages. A cryptic species occupying a basal position within the Pseudoperonospora cubensis complex is revealed to be present on Humulus japonicus, thus providing evidence that the host jump that gave rise to Pseudoperonospora cubensis likely occurred from hops. Notably, Cucurbitaceae infecting pathogens are present in two cryptic sister species or subspecies. Clade 1 contains primarily specimens from North America and likely represents Pseudoperonospora cubensis s.str.. Pre-epidemic isolates in clade 2 originate from Japan and Korea, suggesting this cryptic species or subspecies is indigenous to East Asia. Recent samples of this lineage from epidemics in Europe and the United States cluster together with clade 2. It thus seems possible that this lineage is associated with the recent severe epidemics of cucurbit downy mildew and is now naturalised in North America and Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bains, S. S., & Jhooty, J. S. (1976). Overwintering of Pseudoperonospora cubensis causing downy mildew of muskmelon. Indian Phytopathology, 29, 213–214.

    Google Scholar 

  • Battaglia, R. J. (2010). Wisconsin vegetables—2009. Retrieved from http://www.nass.usda.gov/Statistics_by_State/Wisconsin/Publications/Vegetables/vegannual.pdf, January.

  • Berkeley, M. J. (1869). On a collection of fungi from Cuba. The Journal of the Linnean Society, 10, 363.

    Google Scholar 

  • Cappelli, C., Buonaurio, R., & Stravato, V. M. (2003). Occurrence of Pseudoperonospora cubensis pathotype 5 on squash in Italy. Plant Disease, 87, 449.

    Article  Google Scholar 

  • Chen, Y., & Roxby, R. (1996). Characterization of Phytophthora infestans gene involved in the vesicle transport. Gene, 181, 89–94.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y.-J., & Shin, H.-D. (2008). First record of downy mildew caused by Pseudoperonospora cubensis on bottle gourd in Korea. Plant Pathology, 57, 371.

    Article  Google Scholar 

  • Choi, Y.-J., Hong, S.-B., & Shin, H.-D. (2005). A re-consideration of Pseudoperonospora cubensis and P. humuli based on molecular and morphological data. Mycological Research, 109, 841–848.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y.-J., Shin, H.-D., Hong, S.-B., & Thines, M. (2007). Morphological and molecular discrimination among Albugo candida materials infecting Capsella bursa-pastoris world-wide. Fungal Diversity, 27, 11–34.

    Google Scholar 

  • Choi, Y.-J., Shin, H.-D., Ploch, S., & Thines, M. (2008). Evidence for uncharted biodiversity in the Albugo candida complex, with the description of a new species. Mycological Research, 112, 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y.-J., Shin, H.-D., & Thines, M. (2009). Two novel Peronospora species are associated with recent reports of downy mildew on sages. Mycological Research, 113, 1340–1350.

    Article  CAS  PubMed  Google Scholar 

  • Ciccarese, F., Amenduni, M., & Cirulli, M. (1990). Field reaction to powdery mildew and downy mildew of some cultivars of Cucurbitaceae species in Southern Italy. Phytopathologia Mediterranea, 29, 14–18.

    Google Scholar 

  • Cohen, Y. (1981). Downy mildew of cucurbits. In D. M. Spencer (Ed.), The downy mildews (pp. 341–354). London: Academic.

    Google Scholar 

  • Cohen, Y., Meron, I., Mor, N., & Zuriel, S. (2003). A new pathotype of Pseudoperonospora cubensis causing downy mildew in cucurbits in Israel. Phytoparasitica, 31, 458–466.

    Article  Google Scholar 

  • Colucci, S. J., Thornton, A. C., Adams, M. L., & Holmes, G. J. (2008a). Evaluation of fungicides for control of downy mildew of cucumber I, 2007. Plant Disease Management Reports (online). Report 1:V043. St. Paul: The American Phytopathological Society. doi:10.1094/PDMR02.

    Google Scholar 

  • Colucci, S. J., Thornton, A. C., Adams, M. L., & Holmes, G. J. (2008b). Evaluation of fungicides for control of downy mildew of cucumber II, 2007. Plant Disease Management Reports (online). Report 1:V045. St. Paul: The American Phytopathological Society. doi:10.1094/PDMR02.

    Google Scholar 

  • Constantinescu, O. (1989). Peronospora complex on Compositae. Sydowia, 41, 79–107.

    Google Scholar 

  • Constantinescu, O. (2000). The fine structure of the sporangium in Pseudoperonospora humuli (Chromista, Oomycota, Peronosporales). Cryptogamie, Mycologie, 21, 93–101.

    Article  Google Scholar 

  • Cooke, D. E. L., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A molecular phylogeny of phytophthora and related oomycetes. Fungal Genetics and Biology, 30, 17–32.

    Article  CAS  PubMed  Google Scholar 

  • Davis, J. J. (1910). A new hop mildew. Science, N.S., 31, 752.

    Google Scholar 

  • Dolinar, M., & Žolnir, M. (1994). Schwellenorientiertes Entscheidungsschema für epidemiebezogene Bekämpfung der Hopfenperonospora (Pseudoperonospora humuli Miy. et Tak.). Die Bodenkultur, 45, 49–56.

    Google Scholar 

  • Dudka, I. O., Anishchenko, I. M., & Terent’eva, N. G. (2007). The variability of Peronospora alta Fuckel conidia in dependence on the ecological conditions. In A. Lebeda & P. T. N. Spencer-Phillips (Eds.), Advances in downy mildew research ((pp, Vol. 3, pp. 39–46). Kostelec na Hané, Czech Republic: Palacký University in Olomouc and JOLA.

    Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Fraymouth, J. (1956). Haustoria of the Peronosporales. Transactions of the British Mycological Society, 39, 79–107.

    Article  Google Scholar 

  • Gent, D. H., Nelson, M. E., Farnsworth, J. L., & Grove, G. G. (2009). PCR detection of Pseudoperonospora humuli in air samples from hop yards. Plant Pathology, 58, 1081–1091.

    Article  CAS  Google Scholar 

  • Gisi, U. (2002). Chemical control of downy mildews. In P. T. N. Spencer-Phillips, U. Gisi, & A. Lebeda (Eds.), Advances in downy mildew research (pp. 119–159). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Gugino, B. K., Wyenandt, A., MacGrath, M. T., & Ojiambo, P. S. (2009). Fighting downy mildew [Electronic version]. American Vegetable Grower, February.

  • Halsted, B. D. (1891). Notes upon Peronosporaceae for 1891. Botanical Gazette, 16, 338–340.

    Article  Google Scholar 

  • Hausbeck, M. (2007). Monitoring downy mildew on cucurbits in 2006. Retrieved June 12, 2010, from http://www.veggies.msu.edu/Research/GR06-099DMonitoringDM_2007.pdf.

  • Holmes, G. J., Main, C. E., & Keever, Z. T., III. (2004). Cucurbit downy mildew: A unique pathosystem for disease forecasting. In P. T. N. Spencer-Phillips & M. Jeger (Eds.), Advances in downy mildew research, vol. 2 (pp. 69–80). Dordrecht: Kluwer.

    Google Scholar 

  • Holmes, G., Wehner, T., & Thornton, A. (2006). An old enemy re-emerges [Electronic version]. American Vegetable Grower, pp 14-15, February.

  • Horejsi, T., Staub, J. E., & Thomas, C. (2000). Linkage of random amplified polymorphic DNA markers to downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica, 115, 105–113.

    Article  CAS  Google Scholar 

  • Hudspeth, D. S. S., Nadler, S. A., & Hudspeth, M. E. S. (2000). A COX2 molecular phylogeny of the Peronosporomcetes. Mycologia, 92, 674–684.

    Article  CAS  Google Scholar 

  • Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, H., Fraaije, B. A., Sugiyama, T., Noguchi, K., Nishimura, K., Takeda, T., et al. (2001). Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology, 91, 1166–1171.

    Article  CAS  PubMed  Google Scholar 

  • Iwata, Y. (1942). Specialization in Pseudoperonospora cubensis (Berk. et Curt.) Rostov. II. Comparative studies of the morphologies of the fungi from Cucumis sativus L. and Cucurbita moschata Duchesne. Annals of the Phytopathological Society of Japan, 11, 172–185.

    Google Scholar 

  • Johnson, D. A., Alldredge, J. R., & Allen, J. R. (1994). Weather and downy mildew epidemics of hop in Washington State. Phytopathology, 84, 524–527.

    Article  Google Scholar 

  • Keinath, A. P., Holmes, G. J., Everts, K. L., Egel, D. S., & Langston, D. B., Jr. (2007). Evaluation of combinations of chlorothalonil with azoxystrobin, harpin, and disease forecasting for control of downy mildew and gummy stem blight on melon. Crop Protection, 26, 83–88.

    Article  CAS  Google Scholar 

  • Ko, Y., Chen, C. Y., Liu, C. W., Chen, S. S., Maruthasalam, S., & Lin, C. H. (2008). First report of downy mildew caused by Pseudoperonospora cubensis on Chayote (Sechium edule) in Taiwan. Plant Disease, 92, 1706.

    Article  Google Scholar 

  • Lebeda, A. (1990). Biology and ecology of cucurbit downy mildew. In A. Lebeda (Ed.), Cucurbit downy mildew (pp. 13–46). Prag: Czechoslovak Scientific Society for Mycology by Czechoslovak Academy of Sciences.

    Google Scholar 

  • Lebeda, A. (1991). Resistance in muskmelons to Czechoslovak isolates of Pseudoperonospora cubensis from cucumbers. Scientia Horticulturae, 45, 255–260.

    Article  Google Scholar 

  • Lebeda, A. (1992). Screening of wild Cucumis species against downy mildew (Pseudoperonospora cubensis) isolates from cucumbers. Phytoparasitica, 20, 203–210.

    Article  Google Scholar 

  • Lebeda, A. (1999). Pseudoperonospora cubensis on Cucumis spp. and Cucurbita spp.—resistance breeding aspects. Acta Horticulturae, 492, 363–370.

    Google Scholar 

  • Lebeda, A., & Gadasová, V. (2002). Pathogenic variation of Pseudoperonospora cubensis in the Czech Republic and some other European countries. Acta Horticulturae, 588, 137–141.

    Google Scholar 

  • Lebeda, A., & Schwinn, F. J. (1994). The downy mildews—an overview of recent research progress. Journal of Plant Diseases and Protection, 101, 225–254.

    CAS  Google Scholar 

  • Lebeda, A., & Urban, J. (2004). Disease impact and pathogenicity variation in Czech populations of Pseudoperonospora cubensis. In A. Lebeda & H. S. Paris (Eds.), Progress in Cucurbit genetics and breeding research. Proc. Cucurbitaceae 2004. 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding (pp. 267–273). Olomouc, Czech Republic: Palacký University in Olomouc.

    Google Scholar 

  • Lebeda, A., & Widrlechner, M. P. (2003). A set of Cucurbitaceae taxa for differentiation of Pseudoperonospora cubensis pathotypes. Journal of Plant Diseases and Protection, 110, 337–349.

    Google Scholar 

  • Lebeda, A., & Widrlechner, M. P. (2004). Response of wild and weedy Cucurbita L. to pathotypes of Pseudoperonospora cubensis (Berk. & Curt.) Rostov. (cucurbit downy mildew). In P. T. N. Spencer-Phillips & M. Jeger (Eds.), Advances in downy mildew research, vol. 2 (pp. 203–210). Dordrecht: Kluwer.

    Google Scholar 

  • Lebeda, A., Widrlechner, M. P., & Urban, J. (2006). Individual and population aspects of interactions between cucurbits and Pseudoperonospora cubensis: Pathotypes and races. In G. J. Holmes (Ed.), Proceedings of Cucurbitaceae 2006 (pp. 453–467). North Carolina: Universal Press, Raleigh.

    Google Scholar 

  • Miyabe, K., & Takahashi, Y. (1906). A new disease of hop-vine caused by Peronoplasmopara humuli n. sp. Transactions of the Sapporo Natural History Society, 1, 149–157.

    Google Scholar 

  • Moncalvo, J. M., Wang, H. H., & Hseu, R. S. (1995). Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia, 87, 223–223.

    Article  CAS  Google Scholar 

  • Moorman, G. W., Kang, S., Geiser, D. M., & Kim, S. H. (2002). Identification and characterization of Pythium species associated with greenhouse floral crops in Pennsylvania. Plant Disease, 86, 1227–1231.

    Article  Google Scholar 

  • Mozny, M., Krejci, J., & Kott, I. (1993). CORAC, Hops protection management systems. Computers and Electronics in Agriculture, 9, 103–110.

    Article  Google Scholar 

  • Palti, J. (1974). The significance of pronounced divergences in the distribution of Pseudoperonospora cubensis on its crop hosts. Phytoparasitica, 2, 109–115.

    Article  Google Scholar 

  • Palti, J., & Cohen, Y. (1980). Downy mildew of cucurbits (Pseudoperonospora cubensis): the fungus and its hosts, distribution, epidemiology and control. Phytoparasitica, 8, 109–147.

    Article  Google Scholar 

  • Pérez, B. A., Martínez, E., Noetinger, F., & Wright, E. R. (2009). Hop downy mildew caused by Pseudoperonospora humuli in Argentina. Plant Disease, 93, 839.

    Article  Google Scholar 

  • Pitrat, M., Dogimont, C., & Bardin, M. (1998). Resistance to fungal diseases foliage in melon. In J. D. McCreight (Ed.), Cucurbitaceae ’98. Evaluation and enhancement of cucurbit germplasm (pp. 167–173). Alexandria: ASHS.

    Google Scholar 

  • Rostovzev, S. J. (1903). Beiträge zur Kenntnis der Peronosporeen. Flora, 92, 405–430.

    Google Scholar 

  • Royle, D. J., & Kremheller, H. T. H. (1981). Downy mildew of the hop. In D. M. Spencer (Ed.), The downy mildews (pp. 395–419). London: Academic.

    Google Scholar 

  • Runge, F., & Thines, M. (2010). Host matrix has major impact on the morphology of Pseudoperonospora cubensis. European Journal of Plant Pathology, in this issue.

  • Sarris, P. F., Abdelhalim, M., Kitner, M., Skandalis, N., Panopoulos, N. J., Doulis, A. G., et al. (2009). Molecular polymorphisms between populations of Pseudoperonospora cubensis from Greece and the Czech Republic and the phytopathological and phylogenetic implications. Plant Pathology, 58, 933–943.

    Article  CAS  Google Scholar 

  • Selby, A. D. (1899). Additional host plants of Plasmopara cubensis. Botanical Gazette, 27, 67–68.

    Article  Google Scholar 

  • Shetty, N. V., Wehner, T. C., Thomas, C. E., Doruchowski, R. W., & Shetty, K. P. V. (2002). Evidence for downy mildew races in cucumber tested in Asia, Europe, and North America. Scientia Horticulturae, 94, 231–239.

    Article  Google Scholar 

  • Shin, H.-D., & Choi, Y.-J. (2003). A first check-list of Peronosporaceae from Korea. Mycotaxon, 86, 249–267.

    Google Scholar 

  • Shin, H.-D., & Choi, Y.-J. (2006). Peronosporaceae of Korea. Suwon: National Institute of Agricultural Science and Technology.

    Google Scholar 

  • Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology, 57, 758–771.

    Article  PubMed  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Telle, S., & Thines, M. (2008). Amplification of cox2 (620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. Plos ONE, 3, e3584.

    Article  PubMed  CAS  Google Scholar 

  • Thines, M. (2007). Characterisation and phylogeny of repeated elements giving rise to exceptional length of ITS2 in several downy mildew genera (Peronosporaceae). Fungal Genetics and Biology, 44, 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Thines, M., Telle, S., Ploch, S., & Runge, F. (2009). Identity of the downy mildew pathogens of basil, coleus, and sage with implications for quarantine measures. Mycological Research, 113, 532–540.

    Article  PubMed  Google Scholar 

  • Thomas, C. E., Inaba, T., & Cohen, Y. (1987). Physiological specialization in Pseudoperonospora cubensis. Phytopathology, 77, 1621–1624.

    Article  Google Scholar 

  • Urban, J., & Lebeda, A. (2004). Resistance to fungicides in population of cucurbit downy mildew in the Czech Republic. Acta fytotechnica et zootechnica, 7, 327–329.

    Google Scholar 

  • Urban, J., & Lebeda, A. (2006). Fungicide resistance in cucurbit downy mildew—methodological, biological and population aspects. Annals of Applied Biology, 149, 63–75.

    Article  CAS  Google Scholar 

  • Urban, J., & Lebeda, A. (2007). Variation for fungicide resistance in Czech populations of Pseudoperonospora cubensis. Journal of Phytopathology, 155, 143–151.

    Article  CAS  Google Scholar 

  • Voglmayr, H. (2008). Progress and challenges in systematics of downy mildews and white blister rusts: new insights from genes and morphology. European Journal of Plant Pathology, 122, 3–18.

    Article  Google Scholar 

  • Voglmayr, H., Piatek, M., & Mossebo, D. C. (2009). Pseudoperonospora cubensis causing downy mildew disease on Impatiens irvingii in Cameroon: a new host for the pathogen. Plant Pathology, 58, 394.

    Article  Google Scholar 

  • Waite, M. B. (1892). Description of two new species of Peronospora. The Journal of Mycology, 7, 105–109.

    Article  Google Scholar 

  • Wilson, G. W. (1907a). An historical review of the proposed genera of phycomycetes: I. Peronosporales. The Journal of Mycology, 13, 205–209.

    Article  Google Scholar 

  • Wilson, G. W. (1907b). Studies in North American Peronosporales—II. Phytophthoreae and Rhysotheceae. Bulletin of the Torrey Botanical Club, 34, 415.

    Google Scholar 

Download references

Acknowledgements

The curators of the herbaria BP, BRIP, DAR, FH, and NY are gratefully acknowledged for sending specimens for investigation. Aleš Lebeda, Catherine Erhard, and Peggy Marx are gratefully acknowledged for providing some of the Pseudoperonospora cubensis strains that were used in this study. The present study was financially supported by the research funding programme “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research, and the Arts and by a grant from the German Science Foundation (DFG) awarded to MT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Thines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runge, F., Choi, YJ. & Thines, M. Phylogenetic investigations in the genus Pseudoperonospora reveal overlooked species and cryptic diversity in the P. cubensis species cluster. Eur J Plant Pathol 129, 135–146 (2011). https://doi.org/10.1007/s10658-010-9714-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9714-x

Keywords

Navigation