Skip to main content
Log in

A Geometrically Exact Micromorphic Model for Elastic Metallic Foams Accounting for Affine Microstructure. Modelling, Existence of Minimizers, Identification of Moduli and Computational Results

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We investigate a geometrically exact generalized continua of micromorphic type in the sense of Eringen for the phenomenological description of metallic foams. The two-field problem for the macrodeformation ϕ and the “affine microdeformation” \(\overline{P} \in {\text{GL}}^{{\text{ + }}} {\left( 3 \right)}\) in the quasistatic, conservative elastic case is investigated in a variational form. The elastic stress-strain relation is taken for simplicity as physically linear. Depending on material constants different mathematical existence theorems in Sobolev-spaces are recalled for the resulting nonlinear boundary value problems. These results include existence results obtained by the first author for the micro-incompressible case \(\overline{P} \in {\text{SL}}{\left( 3 \right)}\) and the micropolar case \(\overline{P} \in {\text{SO}}{\left( 3 \right)}\). In order to mathematically treat external loads for large deformations a new condition, called bounded external work, has to be included, overcoming the conditional coercivity of the formulation. The observed possible lack of coercivity is related to fracture of the substructure of the metallic foam. We identify the relevant effective material parameters by comparison with the linear micromorphic model and its classical response for large scale samples. We corroborate the performance of the micromorphic model by presenting numerical calculations based on a linearized version of the finite-strain model and comparing the predictions to experimental results showing a marked size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov. Phys., Solid State 2, 1272–1281 (1961)

    Google Scholar 

  2. Antman, S.: Nonlinear problems of elasticity. In: Applied Mathematical Sciences, vol. 107. Springer, Berlin Heidelberg New York (1995)

    Google Scholar 

  3. Badiche, X., Forest, S., Guibert, T., Bienvenu, Y., Bartout, J.-D., Ienny, P., Croset, M., Bernet, H.: Mechanical properties and non-homogeneous deformation of open-cell nickel foams : application of the mechanics of cellular solids and of porous materials. Mat. Sci. Eng. A289, 276–288 (2000)

    Google Scholar 

  4. Bertram, A., Svendsen, B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53, 653–675 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Blazy, J.-S., Marie-Louise, A., Forest, S., Chastel, Y., Pineau, A., Awade, A., Grolleron, C., Moussy, F.: Deformation and fracture of aluminium foams under proportional and non proportional multi-axial loading: statistical analysis and size effect. Int. J. Mech. Sci. 46, 217–244 (2004)

    Article  Google Scholar 

  6. Capriz, G.: Continua with Microstructure. Springer, Berlin Heidelberg New York (1989)

    MATH  Google Scholar 

  7. Capriz, G., Podio-Guidugli, P.: Formal structure and classification of theories of oriented media. Ann. Mat. Pura Appl. Ser. IV 115, 17–39 (1977)

    Article  MathSciNet  Google Scholar 

  8. Capriz, G., Podio-Guidugli, P.: Structured continua from a Lagrangian point of view. Ann. Mat. Pura Appl. Ser. IV 135, 1–25 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, C., Fleck, N.A.: Size effects in the constrained deformation of metallic foams. J. Mech. Phys. Solids 50, 955–977 (2002)

    Article  MATH  ADS  Google Scholar 

  10. Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory, I. Instantaneous and averaged mechanical variables. Physica, A 322, 359–376 (2003)

    Article  MATH  ADS  Google Scholar 

  11. Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory, II. Balance laws. Physica, A 322, 376–392 (2003)

    ADS  Google Scholar 

  12. Cheng, Z.-Q., He, L.-H.: Micropolar elastic fields due to a circular cylindrical inclusion. Int. J. Eng. Sci. 35, 659–668 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cheng, Z.-Q., He, L.-H.: Micropolar elastic fields due to a spherical inclusion. Int. J. Eng. Sci. 33, 389–397 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ciarlet, P.G.: Three-dimensional elasticity. In: Studies in Mathematics and Its Applications, vol. 1. Elsevier, Amsterdam (1988)(first edition)

    Google Scholar 

  15. De Cicco, S.: Stress concentration effects in microstretch elastic bodies. Int. J. Eng. Sci. 41, 187–199 (2003)

    Article  Google Scholar 

  16. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils (Theory of deformable bodies, NASA TT F-11 561, 1968), Paris (1909)

  17. Dietsche, A., Steinmann, P., Willam, K.: Micropolar elastoplasticity and its role in localization. Int. J. Plast. 9, 813–831 (1993)

    Article  MATH  Google Scholar 

  18. Dillard, T., Forest, S., Ienny, P.: Micromorphic continuum modelling of the deformation and fracture behaviour of nickel foams. Eur. J. Mech. A, Solids 25, 526–549 (2006)

    Article  MATH  ADS  Google Scholar 

  19. Duvaut, G.: Elasticité linéaire avec couples de contraintes. Théorémes d’existence. J. Mec. Paris 9, 325–333 (1970)

    MATH  Google Scholar 

  20. Ehlers, W., Diebels, S., Volk, W.: Deformation and compatibilty for elasto-plastic micropolar materials with applications to geomechanical problems. In: Bertram, A., Sidoroff, F. (eds.) Mechanics of Materials with Intrinsic Length Scale: Physics, Experiments, Modelling and Applications. Journal Physique IV France 8, pp. 127–134. EDP Sciences, France (1998)

    Google Scholar 

  21. Eringen, A.C.: Microcontinuum Field Theories. Springer, Berlin Heidelberg New York (1999)

    MATH  Google Scholar 

  22. Eringen, A.C.: Theory of micropolar elasticity. In: Liebowitz, H. (ed) Fracture. An advanced treatise, vol. II, pp. 621–729. Academic, New York (1968)

    Google Scholar 

  23. Eringen, A.C., Kafadar, C.B.: Polar field theories. In: Eringen, A.C. (ed) Continuum Physics, vol. IV: Polar and Nonlocal Field Theories, pp. 1–73. Academic, New York(1976)

    Google Scholar 

  24. Eringen, A.C., Suhubi, E.S.: Nonlinear theory of simple micro-elastic solids. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  25. Fleck, N.A., Olurin, O.B., Chen, C., Ashby, M.F.: The effect of hole size upon the strength of metallic and polymeric foams. J. Mech. Phys. Solids 49, 2015–2030 (2001)

    Article  MATH  ADS  Google Scholar 

  26. Forest, S.: Homogenization methods and the mechanics of generalized continua – Part 2. Theor. Appl. Mech. 28(29), 113–143 (2002)

    Article  MathSciNet  Google Scholar 

  27. Forest, S., Barbe, F., Cailletaud, G.: Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37, 7105–7126 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Forest, S., Cailletaud, G., Sievert, R.: A Cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch. Mech. 49(4), 705–736 (1997)

    MATH  MathSciNet  Google Scholar 

  29. Forest, S., Dendievel, R., Canova, G.R.: Estimating the overall properties of heterogeneous Cosserat materials. Mod. Simul. Mater. Sci. Eng. 7, 829–840 (1999)

    Article  ADS  Google Scholar 

  30. Forest, S., Sievert, R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  31. Gauthier, R.D.: Experimental investigations on micropolar media. In: Brulin, O., Hsieh, R.K.T. (eds) Mechanics of Micropolar Media, pp. 395–463. CISM Lectures, World Scientific, Singapore (1982)

    Google Scholar 

  32. Germain, P.: The method of virtual power in continuum mechanics. Part 2 : microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gheorghita, V.: On the existence and uniqueness of solutions in linear theory of Cosserat elasticity. I. Arch. Mech. 26, 933–938 (1974)

    MATH  MathSciNet  Google Scholar 

  34. Gheorghita, V.: On the existence and uniqueness of solutions in linear theory of Cosserat elasticity. II. Arch. Mech. 29, 355–358 (1974)

    Google Scholar 

  35. Gibson, L.J., Ashby, M.F.:Cellular Solids. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  36. Günther, W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweigische Wiss. Gesell. 10, 195–213 (1958)

    MATH  Google Scholar 

  37. Grammenoudis, P.: Mikropolare Plastizität. Ph.D-Thesis, Department of Mechanics. TU Darmstadt, http://elib.tu-darmstadt.de/diss/000312 (2003)

  38. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17, 113–147 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  39. Grenestedt, J.L.: Effective elastic behavior of some models for “perfect” cellular solids. Int. J. Solids Struct. 36, 1471–1501 (1999)

    Article  MATH  Google Scholar 

  40. Gurtin, M.E., Podio-Guidugli, P.: On the formulation of mechanical balance laws for structured continua. Z. Angew. Math. Phys. 43, 181–190 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hlavacek, I., Hlavacek, M.: On the existence and uniqueness of solutions and some variational principles in linear theories of elasticity with couple-stresses. I: Cosserat continuum. II: Mindlin’s elasticity with micro-structure and the first strain gradient. J. Appl. Math. 14, 387–426 (1969)

    MathSciNet  Google Scholar 

  42. Hofer, D.: Simulation von Grösseneffekten mit mikromorphen Theorien. Ph.D-Thesis, Department of Mechanics. TU Darmstadt, http://elib.tu-darmstadt.de (2003)

  43. Iesan, D.: Existence theorems in micropolar elastostatics. Int. J. Eng. Sci. 9, 59 (1971)

    Article  MATH  Google Scholar 

  44. Iesan, D., Pompei, A.: On the equilibrium theory of microstretch elastic solids. Int. J. Eng. Sci. 33, 399–410 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  45. Iesan, D., Quintanilla, R.: Existence and continuous dependence results in the theory of microstretch elastic bodies. Int. J. Eng. Sci. 32, 991–1001 (19940

    Article  MathSciNet  Google Scholar 

  46. Iesan, D., Scalia, A.: On Saint-Venants principle for microstretch elastic bodies. Int. J. Eng. Sci. 35, 1277–1290 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  47. Iordache, M.M., Willam, K.: Localized failure analysis in elastoplastic Cosserat continua. Comput. Methods Appl. Mech. Eng. 151, 559–586 (1998)

    Article  MATH  Google Scholar 

  48. Kröner, E.: Mechanics of generalized continua. In: Proceedings of the IUTAM-Symposium on the generalized Cosserat continuum and the continuum theory of dislocations with applications in Freudenstadt, 1967. Springer, Berlin Heidelberg New York (1968)

    Google Scholar 

  49. Marsden, J.E., Hughes, J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, New Jersey (1983)

    MATH  Google Scholar 

  50. Maugin, G.A.: On the structure of the theory of polar elasticity. Philos. Trans. R. Soc. Lond., A 356, 1367–1395 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1962)

    Article  Google Scholar 

  52. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–77 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  53. Mindlin, R.D., Tiersten, H.F.: Effects of couple stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–447 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  54. Mandel, J.: Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973)

    Article  MATH  Google Scholar 

  55. Murdoch, A.I.: Objectivity in classical continuum physics: a rational for discarding the ’principle of invariance under superposed rigid body motions’ in favour of purely objective considerations. Contin. Mech. Thermodyn. 15, 309–320 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. Neff, P.: Finite multiplicative plasticity for small elastic strains with linear balance equations and grain boundary relaxation. Contin. Mech. Thermodyn. 15(2) 161–195 (2003) doi:10.1007/s00161-002-0190-x

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Neff, P.: A geometrically exact micromorphic elastic solid. Modelling and existence of minimizers. Preprint 2318 http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp04.html (2/2004)

  58. Neff, P.: Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. R. Soc. Edinb., A 136, 997–1012 (2006)

    MATH  MathSciNet  Google Scholar 

  59. Neff, P., Forest, S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. Preprint 2373, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp04.html (9/2004)

  60. Neff, P.: Finite multiplicative elastic-viscoplastic Cosserat micropolar theory for polycrystals with grain rotations. Modelling and mathematical analysis. Preprint 2297, http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp03.html (9/2003)

  61. Neff, P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. doi:10.1016/j.ijengsci.2006.04.002

  62. Neff, P.: The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z. Angew. Math. Mech. doi:10.1002/zamm.200510281

  63. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon, Oxford (1986)

    MATH  Google Scholar 

  64. Onck, P.R., Andrews, E.W., Gibson, L.J.: Size effects in ductile cellular solids. Part I : modeling. Int. J. Mech. Sci. 43, 681–699 (2001)

    Article  MATH  Google Scholar 

  65. Oshima, N.: Dynamics of granular media. In: Kondo, K. (ed) Memoirs of the unifying study of the basic problems in engineering science by means of geometry, vol. 1, Division D-VI, pp. 111–120 (563–572). Gakujutsu Bunken Fukyo-Kai (1955)

  66. Podio-Guidugli, P., Vergara Caffarelli, G.: Extreme elastic deformations. Arch. Ration. Mech. Anal. 115, 311–328 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  67. Pradel, F., Sab, K.: Homogenization of discrete media. J. Phys., IV 8, Pr8–317–324 (1998)

    Google Scholar 

  68. Sansour, C.: Ein einheitliches Konzept verallgemeinerter Kontinua mit Mikrostruktur unter besonderer Berücksichtigung der finiten Viskoplastizität. Habilitation-Thesis, Shaker-Verlag, Aachen (1999)

  69. Schaefer, H.: Das Cosserat-Kontinuum. ZAMM 47, 485–498 (1967)

    Article  MATH  Google Scholar 

  70. Sharma, P., Dasgupta, A.: Scale–dependent average elastic fields of spherical and cylindrical inhomogeneities in micropolar medium and overall properties. Technical Report 2001CRD130, GE Research and Development Center, New York, USA (2001)

  71. Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8): 1063–1084 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  72. Steinmann, P.: A unifying treatise of variational principles for two types of micropolar continua. Acta Mech. 121, 215–232 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  73. Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195–207 (1997)

    Article  MathSciNet  Google Scholar 

  74. Toupin, R.A.: Elastic materials with couple stresses. Arch. Ration. Mech. Anal. 11, 385–413 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  75. Toupin, R.A.: Theory of elasticity with couple stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  76. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed) Handbuch der Physik, vol. III/3. Springer, Berlin Heidelberg New York (1965)

    Google Scholar 

  77. Yang, J.F., Lakes, R.S.: Transient study of couple stress effects in compact bone : torsion. J. Biomech. Eng. 103, 275–279 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizio Neff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neff, P., Forest, S. A Geometrically Exact Micromorphic Model for Elastic Metallic Foams Accounting for Affine Microstructure. Modelling, Existence of Minimizers, Identification of Moduli and Computational Results. J Elasticity 87, 239–276 (2007). https://doi.org/10.1007/s10659-007-9106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-007-9106-4

Keywords

Mathematics Subject Classifications (2000)

Navigation