Skip to main content
Log in

A Representation Theorem for Material Tensors of Weakly-Textured Polycrystals and Its Applications in Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Material tensors pertaining to polycrystalline aggregates should manifest also the influence of crystallographic texture on the material properties in question. In this paper we make use of tensors which form bases of irreducible representations of the rotation group and prove a representation theorem by which a given material tensor of a weakly-textured polycrystal is expressed as a linear combination of an orthonormal set of irreducible basis tensors, with the components given explicitly in terms of texture coefficients and a set of undetermined material parameters. Once the irreducible basis tensors that appear in the formula are determined, the representation formula, which is valid for all texture and crystal symmetries, will delineate quantitatively the effect of crystallographic texture on the material tensor in question. We present an integral formula and an orthonormalization process which serve as the basis for a procedure to determine explicitly the irreducible basis tensors required in the representation formula. For applications we determine a set of irreducible basis tensors for the elasticity tensor and a set for fourth-order tensors that define constitutive equations in incompressible elasticity and Hill’s quadratic yield functions in plasticity. We show that orientation averaging of a tensor can be done easily if we have in hand a set of irreducible basis tensors for the decomposition of the tensor in question. As illustration we derive a formula, which is valid for all texture and crystal symmetries, for the elasticity tensor under the Voigt model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Randle, V.: Microtexture Determination and Its Applications, 2nd edn. Maney, London (2003)

    Google Scholar 

  2. Randle, V., Engler, O.: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping. Gordon and Breach, Amsterdam (2000)

    Google Scholar 

  3. Bunge, H.-J.: Zur Darstellung allgemeiner Texturen. Z. Metallkde. 56, 872–874 (1965)

    Google Scholar 

  4. Bunge, H.-J.: Texture Analysis in Materials Science: Mathematical Methods. Butterworths, London (1982)

    Google Scholar 

  5. Roe, R.-J.: Description of crystallite orientation in polycrystalline materials, iii: General solution to pole figures. J. Appl. Phys. 36, 2024–2031 (1965)

    Article  ADS  Google Scholar 

  6. Roe, R.-J.: Inversion of pole figures for materials having cubic crystal symmetry. J. Appl. Phys. 37, 2069–2072 (1966)

    Article  ADS  Google Scholar 

  7. Biedenharn, L.C., Louck, J.D.: Angular Momentum in Quantum Physics: Theory and Application. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  8. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific, Singapore (1988)

    Google Scholar 

  9. Paroni, R.: Homogenization of polycrystalline aggregates. Arch. Ration. Mech. Anal. 151, 311–337 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Morris, P.R.: Averaging fourth-rank tensors with weight functions. J. Appl. Phys. 40, 447–448 (1969)

    Article  ADS  Google Scholar 

  11. Sayers, C.M.: Ultrasonic velocities in anisotropic polycrystalline aggregates. J. Phys. D 15, 2157–2167 (1982)

    Article  ADS  Google Scholar 

  12. Hirao, M., Aoki, K., Fukuoka, H.: Texture of polycrystalline metals characterized by ultrasonic velocity measurements. J. Acoust. Soc. Am. 81, 1434–1440 (1987)

    Article  ADS  Google Scholar 

  13. Li, Y., Thompson, R.B.: Relations between elastic constants C ij and texture parameters for hexagonal materials. J. Appl. Phys. 67, 2663–2665 (1990)

    Article  ADS  Google Scholar 

  14. Morris, P.R.: Polycrystal elastic constants for triclinic crystal and physical symmetry. J. Appl. Crystallogr. 39, 502–508 (2006)

    Article  Google Scholar 

  15. Johnson, G.C.: Acoustoelastic response of a polycrystalline aggregate with orthotropic texture. ASME J. Appl. Mech. 52, 659–663 (1985)

    Article  ADS  Google Scholar 

  16. Man, C.-S., Paroni, R.: On the separation of stress-induced and texture-induced birefringence in acoustoelasticity. J. Elast. 45, 91–116 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kneer, G.: Über die Berechnung der Elastizitätsmoduln vielkristalliner Aggregate mit Textur. Phys. Status Solidi 9, 825–838 (1965)

    Article  Google Scholar 

  18. Morris, P.R.: Elastic constants of polycrystals. Int. J. Eng. Sci. 8, 49–61 (1970)

    Article  Google Scholar 

  19. Huang, M.: Elastic constants of a polycrystal with an orthorhombic texture. Mech. Mater. 36, 623–632 (2004)

    Article  Google Scholar 

  20. Huang, M., Man, C.-S.: Constitutive relation of elastic polycrystal with quadratic texture dependence. J. Elast. 72, 183–212 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huang, M.: Perturbation approach to elastic constitutive relations of polycrystals. J. Mech. Phys. Solids 52, 1827–1853 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Matthies, S.: On the reproducibility of the orientation distribution function of texture samples from pole figures (ghost phenomena). Phys. Status Solidi B 92, K135–K138 (1979)

    Article  ADS  Google Scholar 

  23. Dai, J.-D.: Third-order stiffness constants of textured hexagonal crystallite aggregates with an orthotropic macroscopic symmetry. J. Appl. Phys. 75, 4716–4720 (1994)

    Article  ADS  Google Scholar 

  24. Thompson, R.B., Smith, J.F., Lee, S.S., Johnson, G.C.: A comparison of ultrasonic and X-ray determinations of texture in thin Cu and Al plates. Metall. Trans. A 20A, 2431–2447 (1989)

    ADS  Google Scholar 

  25. Stickels, C.A., Mould, P.R.: The use of Young’s modulus for predicting plastic-strain ratio of low-carbon steel sheets. Metall. Trans. 1, 1303–1312 (1970)

    Google Scholar 

  26. Man, C.-S.: Elastic compliance and Hill’s quadratic yield function for weakly orthotropic sheets of cubic metals. Metall. Mater. Trans. A, Phys. Metall. Mater. Sci. 25A, 2835–2837 (1994)

    Article  ADS  Google Scholar 

  27. Man, C.-S.: On the correlation of elastic and plastic anisotropy in sheet metals. J. Elast. 39, 165–173 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Man, C.-S.: On the constitutive equations of some weakly-textured materials. Arch. Ration. Mech. Anal. 143, 77–103 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Paroni, R., Man, C.-S.: Constitutive equations of elastic polycrystalline materials. Arch. Ration. Mech. Anal. 150, 153–177 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Man, C.-S.: Material tensors of weakly-textured polycrystals. In: Chien, W.-Z., et al. (eds.) Proceedings of the Third International Conference on Nonlinear Mechanics (ICNM-III), pp. 87–94. Shanghai University Press, Shanghai (1998)

    Google Scholar 

  31. Bouten, M.: On the rotation operators in quantum mechanics. Physica 42, 572–580 (1969)

    Article  MATH  ADS  Google Scholar 

  32. Roman, S.: Advanced Linear Algebra, 3rd edn. Springer, New York (2008)

    MATH  Google Scholar 

  33. Jahn, H.A.: Note on the Bhagavantam-Suryanarayana method of enumerating the physical constants of crystals. Acta Crystallogr. 2, 30–33 (1949)

    Article  MathSciNet  Google Scholar 

  34. Sirotin, Yu.I.: Decomposition of material tensors into irreducible parts. Sov. Phys. Crystallogr. 19, 565–568 (1975)

    Google Scholar 

  35. Man, C.-S., Huang, M.: Identification of material parameters in yield functions and flow rules for weakly-textured sheets of cubic metals. Int. J. Non-Linear Mech. 36, 501–514 (2001)

    Article  MATH  ADS  Google Scholar 

  36. Wawrzyńczyk, A.: Group Representations and Special Functions. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  37. Sugiura, M.: Unitary Representations and Harmonic Analysis: An Introduction, 2nd edn. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  38. Naimark, M.A., Štern, A.I.: Theory of Group Representations. Springer, New York (1982)

    Book  MATH  Google Scholar 

  39. Tisza, L.: Zur Deutung der Spektren mehratomiger Moleküle. Z. Phys. 82, 48–72 (1933)

    Article  MATH  ADS  Google Scholar 

  40. Zheng, Q.-S., Zou, W.-N.: Irreducible decompositions of physical tensors of high orders. J. Eng. Math. 37, 273–288 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  41. Zou, W.-N., Zheng, Q.-S., Du, D.-X., Rychlewski, J.: Orthogonal irreducible decompositions of tensors of higher orders. Math. Mech. Solids 6, 249–267 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Serre, J.-P.: Linear Representations of Finite Groups. Springer, New York (1977)

    MATH  Google Scholar 

  43. Morawiec, A.: Orientations and Rotations: Computations in Crystallographic Textures. Springer, Berlin (2004)

    MATH  Google Scholar 

  44. Godefroy, H.A.P.: A study of orientation maps: crystallographic symmetry, mean orientation, and applications. Doctoral Dissertation. University of Kentucky, Lexington (2008)

  45. Man, C.-S., Gao, X., Godefroy, S., Kenik, E.A.: Estimating geometric dislocation densities in polycrystalline materials from orientation imaging microscopy. Int. J. Plast. 26, 423–440 (2010)

    Article  Google Scholar 

  46. Man, C.-S., Young, J.D.: A quadratic plastic potential for weakly-textured orthorhombic sheets of hexagonal metals. In: Goncalves, P.B., et al. (eds.) Applied Mechanics in the Americas, vol. 7, pp. 875–878. American Academy of Mechanics, Philadelphia (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Sing Man.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man, CS., Huang, M. A Representation Theorem for Material Tensors of Weakly-Textured Polycrystals and Its Applications in Elasticity. J Elast 106, 1–42 (2012). https://doi.org/10.1007/s10659-010-9284-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-010-9284-3

Keywords

Mathematics Subject Classification (2000)

Navigation