Skip to main content
Log in

Response of an Elastic Body whose Heat Conduction Is Pressure Dependent

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The properties of many real materials such as the viscosity, thermal and electrical conductivity, specific heat, relaxation time, as well as optical properties, depend upon the pressure to which the body is subject. For instance, the viscosity of fluids can vary by several orders of magnitude due to the variation in the pressure. In this paper we investigate the change in the response of an elastic solid due to the thermal conductivity being pressure dependent. It is well known that higher pressure leads to reduced molecular mobility, in rubber-like materials, leading in turn to higher cross-linking reaction rates. We find that the response of the solid is quite different from the classical response that is obtained by using Fourier’s law of heat conduction. The theoretical predictions according to the assumption that the thermal conductivity is pressure dependent, are in keeping with experimental results concerning the vulcanization of rubbers wherein one observes the conduction to be dependent on the pressure. To our knowledge, this is the first theoretical study that evaluates the response of non-linear elastic solids due the thermal conductivity depending on the pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellander, M., Stenberg, B., Persson, S.: Crosslinking of polybutadiene rubber without any vulcanisation agent. Polym. Eng. Sci. 38, 1254–1260 (1998)

    Article  Google Scholar 

  2. Bilgili, E.: Functional grading of rubber tubes within the context of a molecularly inspired finite thermoelastic model. Acta Mech. 169, 79–85 (2004)

    Article  MATH  Google Scholar 

  3. Biot, J.B.: Mémoire sur la chaleur. Bibliotheque Br. 27, 310–329 (1804)

    Google Scholar 

  4. Bridgman, P.W.: Physics of High Pressures. McMillan, New York (1931)

    Google Scholar 

  5. Bulicek, M., Malek, J., Rajagopal, K.R.: Mathematical analysis of unsteady flows of fluids with pressure, shear rate, and temperature dependent moduli. SIAM J. Math. Anal. 41, 665–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burr, A.C.: Notes on the history of the concept of thermal conductivity. ISIS 20, 246–259 (1933)

    Article  Google Scholar 

  7. Burr, A.C.: Notes on the history of the experimental determination of the thermal conductivity of gases. ISIS 21, 169–186 (1934)

    Article  Google Scholar 

  8. Carlson, D.E.: Linear thermoelasticity. In: Trusedell, C. (ed.) Handbuch der Physik, Bd. VIa/2. Springer, Berlin (1972)

    Google Scholar 

  9. Chen, P.J., Petroski, H.: Controllable states of an elastic heat conductor obeying a fourier law. Int. J. Eng. Sci. 13, 799–814 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Darcy, H.: Determination des lois d’écoulement de l’eau à travers le sable in Les Fontaines Publiques de la Ville de Dijon, pp. 590–594, Victor Dalmont, Paris (1856)

  11. Day, W.A.: Heat Conduction within Linear Thermoelasticity. Springer Tracts in Natural Philosophy, vol. 30. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  12. Duhamel, M.J.M.-C.: Propagation de la chaleur dans les cristaux. J. Éc. Polytech. XIX, 155–188 (1848)

    Google Scholar 

  13. Dunwoody, J., Ogden, R.W.: Heat conduction and controlled deformation in incompressible isotropic elasticity. Math. Mech. Solids 10, 487–502 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fick, A.: Ueber diffusion, Poggendorff Ann. Phys. C Hem. 59–86 (1855a)

  15. Fick, A.: On liquid diffusion. Philos. Mag. J. Sci. 10, 31–39 (1855b)

    Google Scholar 

  16. Grattan-Guinness, I.: J.B.J. Fourier, Théorie de la propagation de la chaleur dans les solides, Manuscript submitted to Institut de France, 21 December, 1807. Archived at Library of the Ecole Nationale des Ponts et Chaussées, Paris (1807). MIT Press, Cambridge, Massachusetts (1972)

  17. Herivel, J.: Joseph Fourier, the Man and the Physicist. Clarendon Press, Oxford (1975)

    Google Scholar 

  18. Herivel, J.: Essay review. Br. J. Hist. Sci. 6, 429–432 (1973)

    Article  Google Scholar 

  19. Humphrey, J., Rajagopal, K.R.: Finite thermoelasticity of constrained elastomers subject to bi-axial loading. J. Elast. 49, 189–200 (1988)

    Article  MathSciNet  Google Scholar 

  20. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticty with Finite Wave Speeds. Oxford University Press, Oxford (2009)

    Book  Google Scholar 

  21. Ingen-Housz, J.: Nouvelles experiences et observations sur divers objets de physique, pp. 380–390. Theophile Barrois le jeune, Paris (1785)

    Google Scholar 

  22. Ivins, E.R., Sammis, C.G., Yoder, C.F.: Deep mantle viscous structure with prior estimate and satellite constraint. J. Geophys. Res. 98, 4579–4609 (1993)

    Article  ADS  Google Scholar 

  23. Kundt, A., Warburg, E.: Philos. Mag. 50, 53-62, i875

  24. Lambert, J.H.: Pyromertrie, oder Vom Maasse de Feuers und der Warme. Haude and Spencer, Berlin (1779)

    Google Scholar 

  25. Lapcyzk, E., Rajagopal, K.R.: Some inhomogeneous motions and deformations within the context of thermoelasticity. Trans. Can. Soc. Mech. Eng. 19, 93–126 (1995)

    Google Scholar 

  26. Lavosier, A.L., Laplace, P.S.: Memoir on Heat, Read to the Royal Academy of Sciences, 28 June (1783), H. Guerlac, translation, Neale Watson Academic, New York (1982)

  27. Martin, S.E., Carlson, D.E.: The behavior of elastic heat conductors with second-order response functions. Z. Angew. Math. Phys. 28, 311–329 (1977)

    Article  MATH  Google Scholar 

  28. McKinney, J.E., Belcher, H.V.: Dynamic compressibility of polyvinylacetate and its relation to free volume. J. Res. Nat. Bur. Stand. Sect. A. Phys. Chem. A 67(1), 43–53 (1963)

    Google Scholar 

  29. Mueller, W.C.: Universal solutions for thermodynamic Fourier material. Q. Appl. Math. 281–290 (1975)

  30. Narasimhan, T.N.: Fourier’s heat conduction equation: history, influence and connections. Rev. Geophys. 7, 151–171 (1999)

    Article  ADS  Google Scholar 

  31. Narasimhan, T.N.: Thermal conductivity through the nineteenth century, Phys. Today, August 36–41 (2010)

  32. Ohm, G.S.: Schweigger’s J. 46 (I37–I66) I826

  33. Petroski, H.J., Carlson, D.E.: Controllable states of elastic heat conductor. Arch. Ration. Mech. Anal. 31, 127–150 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  34. Petroski, H.J., Carlson, D.E.: Some exact solutions to the equations of nonlinear thermoelasticity. Trans. ASME, E, J. Appl. Mech. 1151–1154 (1970)

  35. Rajagopal, K.R., Wineman, A.S.: New exact solutions in non-linear elasticity. Int. J. Eng. Sci. 23(2), 217–234 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rajagopal, K.R., Troy, W.C., Wineman, A.S.: A note on non- universal deformations of nonlinear elastic layers. Proc. R. Ir. Acad. 86A, 107–114 (1986)

    MathSciNet  Google Scholar 

  37. Rajagopal, K.R.: Boundary layers in finite thermoelasticity. J. Elast. 36, 271–301 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rajagopal, K.R., Huang, Y.-N.: Finite circumferential shearing of non-linear solids within the context of thermoelasticity. IMA J. Appl. Math. 50, 22–36 (1994)

    MathSciNet  Google Scholar 

  39. Rajagopal, K.R., Massoudi, M., Maneschy, C.E.: Inhomogeneous deformations in finite thermoelasticity. Int. J. Eng. Sci. 34, 1005–1018 (1996)

    Article  MATH  Google Scholar 

  40. Saccomandi, G.: A note on inhomogeneous deformations of nonlinear elastic layers. IMA J. Appl. Math. 57, 311–324 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Saccomandi, G.: On inhomogeneous deformations in finite thermoelasticity. IMA J. Appl. Math. 63, 131–148 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Saccomandi, G.: Some generalized pseudo-plane deformations for the neo-Hookean material. IMA J. Appl. Math. 70, 550–563 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Sahaphol, T., Miura, S.: Shear moduli of volcanic soils. Soil Dyn. Earthq. Eng. 25, 157–165 (2005)

    Article  Google Scholar 

  44. Singh, H., Nolle, A.W.: Pressure dependence of the viscoelastic behavior of polyisobutylene. J. Appl. Phys. 30, 337–341 (1959)

    Article  ADS  Google Scholar 

  45. Stokes, G.G.: On the conduction of heat in crystals. Camb. Dublin Math. J., VI, 215–238 (1851)

    Google Scholar 

  46. Tonpheng, B., Andersson, O.: Crosslinking, thermal properties and relaxation behavior of polyisoprene under high pressure. Eur. Polym. J. 44, 2865–2873 (2008)

    Article  Google Scholar 

  47. Thomson, W.: On the uniform motion of heat in homogeneous solid bodies and its connection with the mathematical theory of electricity, Cambridge. Math. J. 3, 71–84 (1842)

    Google Scholar 

  48. Weertsman, J., White, S., Cook, A.H.: Creep laws for the mantle of the Earth [and discussion]. Proc. R. Soc., Math. Phys. Eng. Sci. 288, 9–26 (1978)

    Google Scholar 

  49. Wolf, D.: Lamé’s problem of gravitational viscoelasticity: the isochemical, incompressible planet. Geophys. J. Int. 117, 21–348 (1944)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Saccomandi.

Additional information

Dedicated to the memory of Donald E. Carlson.

KRR thanks the Army Research Office for support for this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopal, K.R., Saccomandi, G. Response of an Elastic Body whose Heat Conduction Is Pressure Dependent. J Elast 105, 173–185 (2011). https://doi.org/10.1007/s10659-011-9322-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9322-9

Keywords

Mathematics Subject Classification (2000)

Navigation