Skip to main content
Log in

A Fractional Model of Continuum Mechanics

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Although there has been renewed interest in the use of fractional models in many application areas, in reality fractional analysis has a long and distinguished history and can be traced back to the likes of Leibniz (Letter to L’Hospital, 1695), Liouville (J. Éc. Polytech. 13:71, 1832), and Riemann (Gesammelte Werke, p. 62, 1876). Recent publications (Podlubny in Math. Sci. Eng. 198, 1999; Sabatier et al. in Advances in fractional calculus: theoretical developments and applications in physics and engineering, Springer, Berlin, 2007; Das in Functional fractional calculus for system identification and controls, Springer, Berlin, 2007) demonstrate that fractional derivative models have found widespread applications in science and engineering. Late fundamental considerations have led to the introduction of fractional calculus in continuum mechanics in an attempt to develop non-local constitutive relations (Lazopoulos in Mech. Res. Commun. 33:753–757, 2006). Attempts have also been made to model microscopic forces using fractional derivatives (Vazquez in Nonlinear waves: classical and quantum aspects, pp. 129–133, 2004). Our approach in this paper differs from previous theoretical work, in that we develop a general framework directly from the classical continuum mechanics, by defining the laws of motion and the stresses using fractional derivatives. The timeliness and relevance of this work is justified by the surge in interest in applications of fractional order models to biological, physical and economic systems. The aim of the present paper is to lay the foundations for a new non-local model of continuum mechanics based on fractional order derivatives which we will refer to as the fractional model of continuum mechanics. Following the theoretical development, we apply this framework to two one-dimensional model problems: the deformation of an infinite bar subjected to a self-equilibrated load distribution, and the propagation of longitudinal waves in a thin finite bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagley, R., Torvik, P.: Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21, 741–748 (1983)

    Article  ADS  MATH  Google Scholar 

  2. Bagley, R., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  ADS  MATH  Google Scholar 

  3. Bagley, R., Torvik, P.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)

    Article  ADS  MATH  Google Scholar 

  4. Bazant, Z., Belyschko, T.: Wave propagation in a strain-softening bar: exact solution. J. Eng. Mech. 111, 381–389 (1985)

    Article  Google Scholar 

  5. Bazant, Z.P., Jirasek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128(11), 1119–1149 (2002)

    Article  Google Scholar 

  6. Bazant, Z., Belyschko, T., Cheng, T.P.: Continuum theory for strain-softening. J. Eng. Mech. 110, 1666–1692 (1984)

    Article  Google Scholar 

  7. Beatty, M.: Topics in finite elasticity: hyperelasticity of rubber elastomers and biological tissues-with examples. Appl. Mech. Rev. 40, 1699–1734 (1987)

    Article  ADS  Google Scholar 

  8. Bobaru, F., Yang, M., Alves, L.F., Silling, S.A., Askari, E., Xu, J.: Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 77(6), 852–877 (2008)

    Article  Google Scholar 

  9. Carpinteri, A., Cornetti, P.: A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos Solitons Fractals 13, 85–94 (2002)

    Article  ADS  MATH  Google Scholar 

  10. Carpinteri, A., Chiaia, B., Cornetti, P.: Static-kinematic duality and the principle of virtual work in the mechanics of fractal media. Comput. Methods Appl. Mech. Eng. 191, 3–19 (2001)

    Article  ADS  MATH  Google Scholar 

  11. Carpinteri, A., Cornetti, P., Sapora, A.: Static-kinematic fractional operators for fractal and non-local solids. Z. Angew. Math. Mech. 89(3), 207–217 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Condiff, D.W., Dahler, J.S.: Fluid mechanical aspects of antisymmetric stress. Phys. Fluids 7, 842–854 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Cottone, M., Di Paola, M., Zingales, M.: Fractional mechanical model for the dynamics of non-local continuum. In: Advances in Numerical Methods, pp. 389–423 (2009)

    Chapter  Google Scholar 

  14. Cottone, G., Di Paola, M., Zingales, M.: Elastic waves propagation in 1D fractional non-local continuum. Physica E 42(2), 95–103 (2009)

    ADS  Google Scholar 

  15. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Berlin (2007)

    Google Scholar 

  16. Davis, G., Kohandel, M., Sivaloganathan, S., Tenti, G.: The constitutive properties of the brain parenchyma part 2: fractional derivative approach. Med. Eng. Phys. 28, 455–459 (2006)

    Article  Google Scholar 

  17. Di Paola, M., Zingales, M.: Long-range cohesive interactions of non-local continuum faced by fractional calculus. Int. J. Solids Struct. 45, 5642–5659 (2008)

    Article  MATH  Google Scholar 

  18. Di Paola, M., Pirrotta, A., Zingales, M.: Mechanically-based approach to non-local elasticity: variational principles. Int. J. Solids Struct. 47(5), 539–548 (2010)

    Article  MATH  Google Scholar 

  19. Drapaca, C.S.: A novel mechanical model for magnetic resonance elastography. Rev. Roum. Sci. Tech., Sér. Méc. Appl. 55(1), 3–18 (2010)

    MathSciNet  Google Scholar 

  20. Eringen, A.: Nonlinear Theory of Continuous Media. McGraw-Hill Series in Engineering Sciences (1962)

    Google Scholar 

  21. Eringen, A.C.: Theory of nonlocal elasticity: some applications. Res. Mech. 21, 313–342 (1987)

    Google Scholar 

  22. Eringen, A.C., Edelen, D.G.B.: On non-local elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Heymans, N., Bauwens, J.: Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta 33, 210–219 (1994)

    Article  Google Scholar 

  24. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  25. Ionescu, I., Sofonea, M.: Functional and Numerical Methods in Viscoplasticity. Oxford Univ. Press, London (1993)

    MATH  Google Scholar 

  26. Jumarie, G.: Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution. J. Appl. Math. Comput. 24(1–2), 31–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jumarie, G.: Probability calculus of fractional order and fractional Taylor’s series application to Fokker-Plank equation and information of non-random functions. Chaos Solitons Fractals 40, 1428–1448 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Kilbas, A.A., Srivastava, H.M., Trujillo, I.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204 (2006)

    Book  MATH  Google Scholar 

  29. Kolwankar, K.M., Gangal, A.D.: Fractional differentiability of nowhere differentiable functions and dimensions. Chaos 6, 505–523 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Kuiken, G.D.C.: The symmetry of the stress tensor. Ind. Eng. Chem. Res. 34, 3568–3572 (1995)

    Article  Google Scholar 

  31. Kunin, I.A.: Elastic Media with Microstructure I: One-Dimensional Models. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  32. Lazopoulos, K.A.: Non-local continuum mechanics and fractional calculus. Mech. Res. Commun. 33, 753–757 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Leibniz, G.: Letter to L’Hospital (1695)

  34. Liouville, J.: Sur le calcul des differentielles a indices quelconques. J. Éc. Polytech. 13, 71 (1832)

    Google Scholar 

  35. Lubarda, V.: Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity and biomechanics. Appl. Mech. Rev. 57, 95–108 (2004)

    Article  ADS  Google Scholar 

  36. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)

    Google Scholar 

  37. Meerschaert, M.M., Mortensen, J., Wheatcraft, S.W.: Fractional vector calculus for fractional advection-dispersion. Physica A 367, 181–190 (2006)

    Article  ADS  Google Scholar 

  38. Munkhammar, J.: Riemann-Liouville fractional derivatives and the Taylor-Riemann series. UUDM Project Report 7, 1–18 (2004)

  39. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover, New York (1974)

    MATH  Google Scholar 

  40. Petrosyan, L.G.: Construction of a nonisothermal model of electrohydrodynamics with a nonsymmetric stress tensor. Prikl. Mekh. 16, 108–114 (1980)

    Google Scholar 

  41. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198 (1999)

    MATH  Google Scholar 

  42. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Rajagopal, K., Tao, L.: Mechanics of Mixtures. World Scientific Series on Advances in Mathematics for Applied Sciences, vol. 35 (1995)

    Book  MATH  Google Scholar 

  44. Riemann, B.: Versuch einer allgemeinen Auffassung der Integration and Differentiation. In: Gesammelte Werke, p. 62 (1876)

    Google Scholar 

  45. Rogers, L.: Operators and fractional derivatives for viscoelastic constitutive equations. J. Rheol. 27, 351–372 (1983)

    Article  ADS  MATH  Google Scholar 

  46. Rogula, D.: Nonlocal Theory of Material Media. Springer, Berlin (1982)

    MATH  Google Scholar 

  47. Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Berlin (2007)

    MATH  Google Scholar 

  48. Samko, S., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London (1993)

    MATH  Google Scholar 

  49. Silling, S.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Silling, S.A., Zimmermann, M., Abeyaratne, R.: Deformation of a peridynamic bar. J. Elast. 73, 173–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Suarez, L., Shokooh, A.: Response of systems with damping materials modeled using fractional calculus. Appl. Mech. Rev. 48, S118–S126 (1995)

    Article  ADS  Google Scholar 

  52. Vazquez, L.: A fruitful interplay: from nonlocality to fractional calculus. In: Nonlinear Waves: Classical and Quantum Aspects, pp. 129–133 (2004)

    Google Scholar 

  53. Wilkie, K.P., Drapaca, C.S., Sivaloganathan, S.: A theoretical study of the effect of intraventricular pulsations on the pathogenesis of hydrocephalus. Appl. Math. Comput. 215(9), 3181–3191 (2009)

    Article  MathSciNet  Google Scholar 

  54. Zimmermann, M.: A continuum theory with long-range forces for solids. PhD thesis, MIT (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivaloganathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drapaca, C.S., Sivaloganathan, S. A Fractional Model of Continuum Mechanics. J Elast 107, 105–123 (2012). https://doi.org/10.1007/s10659-011-9346-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-011-9346-1

Keywords

Mathematics Subject Classification (2000)

Navigation