Skip to main content
Log in

Plane Waves and Uniqueness Theorems in the Coupled Linear Theory of Elasticity for Solids with Double Porosity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper concerns with the coupled linear dynamical theory of elasticity for solids with double porosity. Basic properties of plane harmonic waves are established. Radiation conditions of regular vectors are given. Basic internal and external boundary value problems (BVPs) of steady vibrations are formulated, and finally, uniqueness theorems for regular (classical) solutions of these BVPs are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1975)

    Google Scholar 

  2. Aifantis, E.C.: On the problem of diffusion in solids. Acta Mech. 37, 265–296 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aifantis, E.C.: On Barenblatt’s problem. Int. J. Eng. Sci. 18, 857–867 (1980)

    Article  MATH  Google Scholar 

  4. Aifantis, E.C., Hill, J.M.: On the theory of diffusion in media with double diffusivity I. Basic mathematical results. Q. J. Mech. Appl. Math. 33, 1–21 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aifantis, E.C.: Gradient nanomechanics: applications to deformation, fracture, and diffusion in nanopolycrystals. Metall. Mater. Trans. A 42, 2985–2998 (2011)

    Article  Google Scholar 

  6. Auriault, J.L., Royer, P.: Double conductivity media: a comparison between phenomenological and homogenization approaches. Int. J. Heat Mass Transf. 36, 2613–2621 (1993)

    Article  MATH  Google Scholar 

  7. Bai, M., Elsworth, D., Roegiers, J.C.: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour. Res. 29, 1621–1633 (1993)

    Article  ADS  Google Scholar 

  8. Bai, M., Roegiers, J.C.: Fluid flow and heat flow in deformable fractured porous media. Int. J. Eng. Sci. 32(10), 1615–1633 (1994)

    Article  MATH  Google Scholar 

  9. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concept in the theory of seepage of homogeneous liquids in fissured rocks (strata). J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  MATH  Google Scholar 

  10. Beskos, D.E., Aifantis, E.C.: On the theory of consolidation with double porosity-II. Int. J. Eng. Sci. 24, 1697–1716 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  ADS  MATH  Google Scholar 

  12. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range. J. Acoust. Soc. Am. 28, 168–178 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  13. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid, II. Higher frequency range. J. Acoust. Soc. Am. 28, 179–191 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  14. Biot, M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. de Boer, R.: Theory of Porous Media: Highlights in the Historical Development and Current State. Springer, Berlin (2000)

    Book  Google Scholar 

  16. Burchuladze, T., Svanadze, M.: Potential method in the linear theory of binary mixtures for thermoelastic solids. J. Therm. Stress. 23, 601–626 (2000)

    Article  MathSciNet  Google Scholar 

  17. Chiriţă, S., Ciarletta, M., D’Apice, C.: On the theory of thermoelasticity with microtemperatures. J. Math. Anal. Appl. 397, 349–361 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ciarletta, M., Svanadze, M., Buonano, L.: Plane waves and vibrations in the micropolar thermoelastic materials with voids. Eur. J. Mech. A, Solids 28, 897–903 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  20. Dafermos, C.M.: On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch. Ration. Mech. Anal. 29, 241–271 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fosdick, R., Piccioni, M.D., Puglisi, G.: A note on uniqueness in linear elastostatics. J. Elast. 88, 79–86 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Forest, S., Aifantis, E.C.: Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2010)

    Article  MATH  Google Scholar 

  23. Gegelia, T., Jentsch, L.: Potential methods in continuum mechanics. Georgian Math. J. 1, 599–640 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hill, J.M., Aifantis, E.C.: On the theory of diffusion in media with double diffusivity I. Boundary value problems. Q. J. Mech. Appl. Math. 33, 23–42 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ieşan, D.: Some theorems in the theory of elastic materials with voids. J. Elast. 15, 215–224 (1985)

    Article  MATH  Google Scholar 

  26. Ieşan, D., Quintanilla, R.: On thermoelastic bodies with inner structure and microtemperatures. J. Math. Anal. Appl. 354, 12–23 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Khaled, M.Y., Beskos, D.E., Aifantis, E.C.: On the theory of consolidation with double porosity III. Int. J. Numer. Anal. Methods Geomech. 8, 101–123 (1984)

    Article  MATH  Google Scholar 

  28. Khalili, N.: Coupling effects in double porosity media with deformable matrix. Geophys. Res. Lett. 30(22), 2153 (2003)

    Article  ADS  Google Scholar 

  29. Khalili, N., Habte, M.A., Zargarbashi, S.: A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis. Comput. Geotech. 35(6), 872–889 (2008)

    Article  Google Scholar 

  30. Khalili, N., Selvadurai, A.P.S.: A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30(24), 2268 (2003)

    Article  ADS  Google Scholar 

  31. Khalili, N., Valliappan, S.: Unified theory of flow and deformation in double porous media. Eur. J. Mech. A, Solids 15, 321–336 (1996)

    MATH  Google Scholar 

  32. Knops, R.J., Payne, L.E.: Uniqueness Theorems in Linear Elasticity. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  33. Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program Sci. Transl., Jerusalem (1965)

    MATH  Google Scholar 

  34. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  35. Lee, A.I., Hill, J.M.: On the general linear coupled system for diffusion in media with two diffusivities. J. Math. Anal. Appl. 89, 530–557 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  36. Masters, I., Pao, W.K.S., Lewis, R.W.: Coupling temperature to a double-porosity model of deformable porous media. Int. J. Numer. Methods Eng. 49, 421–438 (2000)

    Article  MATH  Google Scholar 

  37. Moutsopoulos, K.N., Konstantinidis, A.A., Meladiotis, I., Tzimopoulos, Ch.D., Aifantis, E.C.: Hydraulic behavior and contaminant transport in multiple porosity media. Transp. Porous Media 42, 265–292 (2001)

    Article  Google Scholar 

  38. Passarella, F., Tibullo, V., Zampoli, V.: On the strong ellipticity for orthotropic micropolar elastic bodies in a plane strain state. Mech. Res. Commun. 38, 512–517 (2011)

    Article  MATH  Google Scholar 

  39. Passarella, F., Tibullo, V., Zampoli, V.: On the heat-flux dependent thermoelasticity for micropolar porous media. J. Therm. Stress. 34, 778–794 (2011)

    Article  Google Scholar 

  40. Passarella, F., Tibullo, V., Zampoli, V.: On microstretch thermoviscoelastic composite materials. Eur. J. Mech. A, Solids 37, 294–303 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Passarella, F., Tibullo, V., Zampoli, V.: On the uniqueness in dynamical thermoelasticity backward in time for porous media. J. Therm. Stress. (in press)

  42. Passarella, F., Zampoli, V.: On the theory of micropolar thermoelasticity without energy dissipation. J. Therm. Stress. 33, 305–317 (2010)

    Article  Google Scholar 

  43. Passarella, F., Zampoli, V.: Reciprocal and variational principles in micropolar thermoelasticity of type II. Acta Mech. 216, 29–36 (2011)

    Article  MATH  Google Scholar 

  44. Puri, P., Cowin, S.C.: Plane waves in linear elastic materials with voids. J. Elast. 15, 167–183 (1985)

    Article  MATH  Google Scholar 

  45. Quintanilla, R.: Uniqueness in thermoelasticity of porous media with microtemperatures. Arch. Mech. 61, 371–382 (2009)

    MATH  MathSciNet  Google Scholar 

  46. Scalia, A., Svanadze, M.: Uniqueness theorems in the equilibrium theory of thermoelasticity with microtemperatures for microstretch solid. J. Mech. Mater. Struct. 6, 1295–1311 (2011)

    Article  Google Scholar 

  47. Scarpetta, E., Sumbatyan, M.A.: Explicit analytical results for one-mode normal reflection and transmission by a periodic array of screens. J. Math. Anal. Appl. 195, 736–749 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  48. Svanadze, M.: On existence of eigenfrequencies in the theory of two-component elastic mixtures. Q. J. Mech. Appl. Math. 51, 427–437 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  49. Svanadze, M.: Fundamental solution in the theory of consolidation with double porosity. J. Mech. Behav. Mater. 16, 123–130 (2005)

    Google Scholar 

  50. Svanadze, M.: Plane waves and eigenfrequencies in the linear theory of binary mixtures of thermoelastic solids. J. Elast. 92, 195–207 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Svanadze, M.: Plane waves and boundary value problems in the theory of elasticity for solids with double porosity. Acta Appl. Math. 122, 461–471 (2012)

    MATH  MathSciNet  Google Scholar 

  52. Wilson, R.K., Aifantis, E.C.: On the theory of consolidation with double porosity-I. Int. J. Eng. Sci. 20, 1009–1035 (1982)

    Article  MATH  Google Scholar 

  53. Zhao, Y., Chen, M.: Fully coupled dual-porosity model for anisotropic formations. Int. J. Rock Mech. Min. Sci. 43, 1128–1133 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the reviewers for fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merab Svanadze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarletta, M., Passarella, F. & Svanadze, M. Plane Waves and Uniqueness Theorems in the Coupled Linear Theory of Elasticity for Solids with Double Porosity. J Elast 114, 55–68 (2014). https://doi.org/10.1007/s10659-012-9426-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9426-x

Keywords

Mathematics Subject Classification (2010)

Navigation