Skip to main content
Log in

Effective Description of Anisotropic Wave Dispersion in Mechanical Band-Gap Metamaterials via the Relaxed Micromorphic Model

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper the relaxed micromorphic material model for anisotropic elasticity is used to describe the dynamical behavior of a band-gap metamaterial with tetragonal symmetry. Unlike other continuum models (Cauchy, Cosserat, second gradient, classical Mindlin–Eringen micromorphic etc.), the relaxed micromorphic model is endowed to capture the main microscopic and macroscopic characteristics of the targeted metamaterial, namely, stiffness, anisotropy, dispersion and band-gaps.

The simple structure of our material model, which simultaneously lives on a micro-, a meso- and a macroscopic scale, requires only the identification of a limited number of frequency-independent and thus truly constitutive parameters, valid for both static and wave-propagation analyses in the plane. The static macro- and micro-parameters are identified by numerical homogenization in static tests on the unit-cell level in Neff et al. (J. Elast., https://doi.org/10.1007/s10659-019-09752-w, 2019, in this volume).

The remaining inertia parameters for dynamical analyses are calibrated on the dispersion curves of the same metamaterial as obtained by a classical Bloch–Floquet analysis for two wave directions.

We demonstrate via polar plots that the obtained material parameters describe very well the response of the structural material for all wave directions in the plane, thus covering the complete panorama of anisotropy of the targeted metamaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This means that the components \(D_{\mathit{ij}}\) of the matrix \(D\) are functions \(D_{\mathit{ij}} (k,\omega,\mathbb{T},\mathbb{T}_{\textrm{c}},\mathbb {J}_{\textrm{micro}},\mathbb{J}_{\textrm{c}},\mathbb{C}_{\textrm{e}},\mathbb{C}_{\textrm{c}}, \mathbb{C}_{\textrm{micro}},\mathbb {L},\mathbb{L}_{\textrm{c}},L_{c} )\). In the following, we will explicitly state only the dependence on \((k,\omega )\) if not differently specified.

  2. Note that once \(\widehat {P}^{D}\) and \(\widehat{P}^{S}\) are known then \(\widehat{P}^{V}\) is automatically determined and, in general, not vanishing.

  3. \(\mathbb{D}_{4}\) is the dihedral group of order 4. It counts 8 elements.

References

  1. Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Low-and high-frequency Stoneley waves, reflection and transmission at a Cauchy/relaxed micromorphic interface (2018). arXiv preprint. arXiv:1810.12578

  2. Aivaliotis, A., Daouadji, A., Barbagallo, G., Tallarico, D., Neff, P., Madeo, A.: Microstructure-related Stoneley waves and their effect on the scattering properties of a 2d Cauchy/relaxed-micromorphic interface. Wave Motion 90, 99–120 (2019)

    MathSciNet  Google Scholar 

  3. Antonakakis, T., Craster, R., Guenneau, S.: High-frequency homogenization of zero-frequency stop band photonic and phononic crystals. New J. Phys. 15(10), 103014 (2013)

    ADS  Google Scholar 

  4. Armenise, M.N., Campanella, C.E., Ciminelli, C., Dell’Olio, F., Passaro, V.M.N.: Phononic and photonic band gap structures: modelling and applications. Phys. Proc. 3(1), 357–364 (2010)

    ADS  Google Scholar 

  5. Auffray, N.: On the algebraic structure of isotropic generalized elasticity theories. Math. Mech. Solids 20(5), 565–581 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Auffray, N., Le Quang, H., He, Q.-C.: Matrix representations for 3d strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202–1223 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.-D., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Int. J. Solids Struct. 120, 7–30 (2017)

    MATH  Google Scholar 

  8. Barbagallo, G., Tallarico, D., d’Agostino, M.V., Aivaliotis, A., Neff, P., Madeo, A.: Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures. Int. J. Solids Struct. 162, 148–163 (2019)

    Google Scholar 

  9. Bloch, F.: Über die Quantenmechanik der Elektronen in Cristallgittern. Z. Phys. A, Hadrons Nucl. 52(7), 555–600 (1929)

    MATH  Google Scholar 

  10. Miguel, C., Truskinovsky, L.: Lattice dynamics from a continuum viewpoint. J. Mech. Phys. Solids 60(8), 1508–1544 (2012)

    Google Scholar 

  11. Chen, Y., Lee, J.D.: Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables. Phys. A, Stat. Mech. Appl. 322, 359–376 (2003)

    MATH  Google Scholar 

  12. Chen, Y., Lee, J.D.: Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41(8), 871–886 (2003)

    Google Scholar 

  13. d’Agostino, M.V., Barbagallo, G., Ghiba, I.-D., Abreu, R., Madeo, A., Neff, P.: A panorama of dispersion curves for the isotropic weighted relaxed micromorphic model. Z. Angew. Math. Mech. 97(11), 1436–1481 (2017)

    MathSciNet  MATH  Google Scholar 

  14. dell’Isola, F., Madeo, A., Placidi, L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. Z. Angew. Math. Mech. 92(1), 52–71 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Dong, H.-W., Zhao, S.-D., Wang, Y.-S., Zhang, C.: Topology optimization of anisotropic broadband double-negative elastic metamaterials. J. Mech. Phys. Solids 105, 54–80 (2017)

    ADS  MathSciNet  Google Scholar 

  16. Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)

    MATH  Google Scholar 

  17. Findeisen, C., Hohe, J., Kadic, M., Gumbsch, P.: Characteristics of mechanical metamaterials based on buckling elements. J. Mech. Phys. Solids 102, 151–164 (2017)

    ADS  MathSciNet  Google Scholar 

  18. Floquet, G.: Sur les equations differentielles lineaires. Ann. Éc. Norm. Supér. 12(1883), 47–88 (1883)

    MATH  Google Scholar 

  19. Hlaváček, M.: A continuum theory for isotropic two-phase elastic composites. Int. J. Solids Struct. 11(10), 1137–1144 (1975)

    MATH  Google Scholar 

  20. Lee, M.K., Ma, P.S., Lee, I.K., Kim, H.W., Kim, Y.Y.: Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates. Appl. Phys. Lett. 98(1), 011909 (2011)

    ADS  Google Scholar 

  21. Madeo, A., Barbagallo, G., d’Agostino, M.V., Placidi, L., Neff, P.: First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model. Proc. R. Soc. A, Math. Phys. Eng. Sci. 472(2190), 20160169 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Madeo, A., Collet, M., Miniaci, M., Billon, K., Ouisse, M., Neff, P.: Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia. J. Elast. 130, 1–25 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Madeo, A., Neff, P., Aifantis, E.C., Barbagallo, G., d’Agostino, M.V.: On the role of micro-inertia in enriched continuum mechanics. Proc. R. Soc. A 473(2198), 20160722 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Madeo, A., Neff, P., d’Agostino, M.V., Barbagallo, G.: Complete band gaps including non-local effects occur only in the relaxed micromorphic model. C. R., Méc. 344(11), 784–796 (2016)

    ADS  Google Scholar 

  25. Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Band gaps in the relaxed linear micromorphic continuum. Z. Angew. Math. Mech. 95(9), 880–887 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Contin. Mech. Thermodyn. 27(4–5), 551–570 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Madeo, A., Neff, P., Ghiba, I.-D., Rosi, G.: Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model. J. Mech. Phys. Solids 95, 441–479 (2016)

    ADS  MathSciNet  Google Scholar 

  28. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  29. Neff, P.: On material constants for micromorphic continua. In: Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim, pp. 337–348. Shaker–Verlag, Aachen (2004)

    Google Scholar 

  30. Neff, P., Eidel, B., d’Agostino, M.V., Madeo, A.: Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization. J. Elast. (in this volume) (2019). https://doi.org/10.1007/s10659-019-09752-w

    Article  Google Scholar 

  31. Neff, P., Forest, S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87(2–3), 239–276 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Neff, P., Ghiba, I.-D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Contin. Mech. Thermodyn. 26(5), 639–681 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Neff, P., Madeo, A., Barbagallo, G., d’Agostino, M.V., Abreu, R., Ghiba, I.-D.: Real wave propagation in the isotropic-relaxed micromorphic model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2197) (2017). https://doi.org/10.1098/rspa.2016.0790

  34. Nemat-Nasser, S., Srivastava, A.: Overall dynamic constitutive relations of layered elastic composites. J. Mech. Phys. Solids 59(10), 1953–1965 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Nemat-Nasser, S., Willis, J.R., Srivastava, A., Amirkhizi, A.V.: Homogenization of periodic elastic composites and locally resonant sonic materials. Phys. Rev. B 83(10), 104103 (2011)

    ADS  Google Scholar 

  36. Olive, M., Auffray, N.: Symmetry classes for even-order tensors. Math. Mech. Complex Syst. 1(2), 177–210 (2013)

    MATH  Google Scholar 

  37. Olive, M., Auffray, N.: Symmetry classes for odd-order tensors. Z. Angew. Math. Mech. 94(5), 421–447 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Owczarek, S., Ghiba, I.-D., d’Agostino, M.V., Neff, P.: Nonstandard micro-inertia terms in the relaxed micromorphic model: well-posedness for dynamics. Math. Mech. Solids 24(10), 3200–3215 (2019)

    MathSciNet  Google Scholar 

  39. Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Rosi, G., Auffray, N.: Anisotropic and dispersive wave propagation within strain-gradient framework. Wave Motion 63, 120–134 (2016)

    Google Scholar 

  41. Rosi, G., Placidi, L., Auffray, N.: On the validity range of strain-gradient elasticity: a mixed static-dynamic identification procedure. Eur. J. Mech. A, Solids 69, 179–191 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Smyshlyaev, V.P.: Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization. Mech. Mater. 41(4), 434–447 (2009)

    Google Scholar 

  43. Smyshlyaev, V.P., Cherednichenko, K.D.: On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. J. Mech. Phys. Solids 48(6–7), 1325–1357 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Steurer, W., Sutter-Widmer, D.: Photonic and phononic quasicrystals. J. Phys. D, Appl. Phys. 40(13), 229–247 (2007)

    ADS  Google Scholar 

  45. Zhikov, V.V., Pastukhova, S.E.: Operator estimates in homogenization theory. Russ. Math. Surv. 71(3), 417 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Angela Madeo acknowledges funding from the French Research Agency ANR, “METASMART” (ANR-17CE08-0006) and the support from IDEXLYON in the framework of the “Programme Investissement d’Avenir” ANR-16-IDEX-0005. All the authors acknowledge funding from the “Région Auvergne-Rhône-Alpes” for the “SCUSI” project for international mobility France/Germany. The work of I.D. Ghiba was supported by a grant of the "Alexandru Ioan Cuza" University of Iasi, within the Research Grants program, Grant UAIC, code GI-UAIC-2017-10. B. Eidel acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) within the Heisenberg program (grant no. EI 453/2-1).

The authors thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Valerio d’Agostino.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Equivalent Dynamical Determination of the Macroscopic Stiffness \(\mathbb{C}_{\textrm{macro}}\)

Appendix: Equivalent Dynamical Determination of the Macroscopic Stiffness \(\mathbb{C}_{\textrm{macro}}\)

In this appendix we show how the macroscopic parameters previously obtained by simple static arguments can be equivalently computed using the slopes of the acoustic dispersion curves close to the origin. This equivalent method is very useful to make a strong connection between the relaxed micromorphic model and classical elasticity, but it does not add any extra feature to the fitting procedure presented above.

1.1 Tangents in Zero to the Acoustic Branches

Let us consider the “macroscopic” Cauchy partial differential system of equations

$$ \rho u_{,\mathit{tt}}-\textrm{Div} (\mathbb{C}_{\textrm{macro}}\operatorname{sym}\nabla u)=0 $$
(19)

which is the limiting case of the relaxed micromorphic model when \(L_{c}\) tends to zero. In this classical case, it is possible to obtain an analytical expression for the dispersion curves. In order to achieve this goal, we insert a generic plane wave function \(\widetilde{u} e^{\mathfrak{i}( \langle \boldsymbol{k},x \rangle-\omega t )}\) in (19) obtaining

$$\begin{aligned} &\textrm{Div} \bigl[\mathbb{C}_{\textrm{macro}}\operatorname{sym}\nabla \bigl(\widetilde{u} e^{\mathfrak{i}( \langle\boldsymbol{k},x \rangle-\omega t )} \bigr) \bigr] \\ & \quad = \biggl[(\mathbb{C}_{\textrm{macro}})_{ijmn} \frac{1}{2} ( \widetilde{u}_{m}k_{n}+ \widetilde{u}_{n}k_{m} ) \mathfrak{i}e^{\mathfrak{i}( \langle\boldsymbol {k},x \rangle-\omega t )} \biggr]_{,j} \\ & \quad =-\frac{1}{2} \bigl[(\mathbb{C}_{\textrm{macro}})_{ijmn} ( \widetilde{u}_{m}k_{n}+\widetilde{u}_{n}k_{m} ) k_{j} e^{\mathfrak{i}( \langle\boldsymbol{k},x \rangle-\omega t )} \bigr] \\ & \quad =-\frac{1}{2} \bigl[ (\mathbb{C}_{\textrm{macro}})_{ijmn}k_{j} \widetilde{u}_{m}k_{n}+ (\mathbb{C}_{\textrm{macro}})_{ijmn}k_{j} \widetilde{u}_{n}k_{m} \bigr]e^{\mathfrak{i}( \langle\boldsymbol{k},x \rangle-\omega t )} \\ & \quad =-\frac{1}{2} \bigl[ (\mathbb{C}_{\textrm{macro}})_{ijmn}k_{j} \widetilde{u}_{m}k_{n}+ (\mathbb{C}_{\textrm{macro}})_{ijnm}k_{j} \widetilde{u}_{n}k_{m} \bigr]e^{\mathfrak{i}( \langle\boldsymbol{k},x \rangle-\omega t )} \\ & \quad =- (\mathbb{C}_{\textrm{macro}})_{ijmn}k_{j}\widetilde{u}_{m}k_{n} e^{\mathfrak{i}( \langle\boldsymbol{k},x \rangle-\omega t )}, \end{aligned}$$
(20)

for the static term and

$$\rho u_{,\mathit{tt}}=-\rho \omega^{2} \widetilde{u} e^{\mathfrak{i}( \langle\boldsymbol{k},x \rangle-\omega t )}=-\rho \omega^{2} \delta_{\mathit{im}} \widetilde{u}_{m} e^{\mathfrak{i}( \langle \boldsymbol{k},x \rangle-\omega t )} $$

for the kinetic term. Thus, finally combining the two expressions we have that \(\widetilde{u} e^{\mathfrak{i}( \langle\boldsymbol{k},x \rangle-\omega t )}\) satisfies the system (19) if and only if

$$-\rho \omega^{2} \delta_{\mathit{im}} \widetilde{u}_{m} e^{\mathfrak{i}( \langle\boldsymbol{k},x \rangle-\omega t )}+ (\mathbb{C}_{\textrm{macro}})_{\mathit{ijmn}}k_{j} \widetilde{u}_{m}k_{n} e^{\mathfrak{i}( \langle\boldsymbol{k},x \rangle-\omega t )}=0 $$

and since the function \(e^{\mathfrak{i}( \langle\boldsymbol{k},x \rangle -\omega t )}\) is always non-zero this gives

$$ \bigl(\rho \omega^{2}\delta_{\mathit{im}}- (\mathbb{C}_{\textrm{macro}}){}_{\mathit{ijmn}} k_{j} k_{n} \bigr) \widetilde{u}_{m}=0 $$
(21)

and writing the wave vector as \(\boldsymbol{k}=k\widehat{\boldsymbol {k}}\) with \(\widehat{\boldsymbol{k}}= (\widehat{k}_{1},\widehat {k}_{2},\widehat{k}_{3} )\) unitary and \(k= \Vert \boldsymbol{k} \Vert \), we arrive to

$$ \bigl(\rho\omega^{2}\delta _{\mathit{im}}-k^{2} (\mathbb{C}_{\textrm{macro}}){}_{\mathit{ijmn}} \widehat{k}_{j} \widehat{k}_{n} \bigr) \widetilde{u}_{m}=0. $$
(22)

The equation (22) is an eigenvalues problem for the linear application \(k^{2} (\mathbb{C}_{\textrm{macro}}){}_{\mathit {ijmn}}\widehat{k}_{j}\widehat{k}_{n}\). The stated problem admits non-trivial solutions if and only if the determinant of \(\rho\omega^{2}\delta_{\mathit{im}}-k^{2} (\mathbb{C}_{\textrm{macro}}){}_{\mathit{ijmn}}\widehat{k}_{j}\widehat{k}_{n}\) is zero. In this way, we are interested in looking for couples \((k,\omega )\) such that

$$ \det \bigl(\rho\omega^{2}\delta_{\mathit{im}}-k^{2} (\mathbb{C}_{\textrm{macro}}){}_{\mathit{ijmn}}\widehat{k}_{j}\widehat{k}_{n} \bigr)=0. $$
(23)

Moreover, we are interested in studying this problem as a function of the direction of propagation \(\widehat{\boldsymbol{k}}\) of the wave. In order to do this, it is convenient to introduce spherical coordinates for the wave vector \(\widehat{\boldsymbol{k}}\in\mathbb{S}^{2}\) (the unit sphere in \(\mathbb{R}^{3}\)):

$$ k_{1}=\sin\varphi\cos\vartheta,\qquad k_{2}=\sin \varphi\sin\vartheta,\qquad k_{3}=\cos\varphi, $$
(24)

where \(\vartheta\in [0,2\pi )\) is the polar angle and \(\varphi\in [0,\pi ]\) is the azimuthal angle. For the problem in the \((x_{1},x_{2},0 )\) plane, the angle \(\varphi\) is \(\pi/2\), so

$$ k_{1}=\cos\vartheta, \qquad k_{2}=\sin\vartheta, \qquad k_{3}=0, $$
(25)

and

$$\widehat{\boldsymbol{k}}\otimes\widehat{\boldsymbol{k}}= \begin{pmatrix}\cos^{2}\vartheta& \cos\vartheta\sin\vartheta& 0\\ \cos\vartheta\sin\vartheta& \sin^{2}\vartheta& 0\\ 0 & 0 & 0 \end{pmatrix} . $$

Let us now consider the Voigt representation of the tensor \(\mathbb {C}_{\textrm{macro}}\) in the case of the tetragonal symmetry

$$\begin{aligned} &\widetilde{\mathbb{C}}_{\textrm{macro}} \\ & \quad = \small{ \left ( \textstyle\begin{array}{c@{\ }c@{\ }c@{\ }c@{\ }c@{\ }c} 2\mu_{\textrm{macro}}+\lambda_{\textrm{macro}} & \lambda_{\textrm{macro}} & \lambda_{\textrm{macro}}^{*} & 0 & 0 & 0\\ \lambda_{\textrm{macro}} & 2\mu_{\textrm{macro}}+\lambda_{\textrm {macro}} & \lambda_{\textrm{macro}}^{*} & 0 & 0 & 0\\ \lambda_{\textrm{macro}}^{*} & \lambda_{\textrm{macro}}^{*} & (\widetilde{\mathbb{C}}_{\textrm{macro}})_{33} & 0 & 0 & 0\\ 0 & 0 & 0 & (\widetilde{\mathbb{C}}_{\textrm{macro}})_{44} & 0 & 0\\ 0 & 0 & 0 & 0 & (\widetilde{\mathbb{C}}_{\textrm{macro}})_{44} & 0\\ 0 & 0 & 0 & 0 & 0 & \mu_{\textrm{macro}}^{*} \end{array}\displaystyle \right ) } . \end{aligned}$$

A direct calculation gives

$$\begin{aligned} &(\mathbb{C}_{\textrm{macro}}){}_{\mathit{ijmn}}\widehat{k}_{j}\widehat{k}_{n} \\ & = \left ( \textstyle\begin{array}{c@{\ }c@{\ }c} \mu_{\textrm{macro}}^{\ast}\,\sin^{2}\vartheta+\cos^{2}\vartheta (\lambda_{\textrm{macro}}+2\mu_{\textrm{macro}} ) & \cos\vartheta \sin\vartheta (\mu_{\textrm{macro}}^{\ast}+\lambda_{\textrm {macro}} ) & 0\\ \cos\vartheta\sin\vartheta (\mu_{\textrm{macro}}^{\ast}+\lambda _{\textrm{macro}} ) & \cos^{2}\vartheta\mu_{\textrm{macro}}^{\ast }+\sin^{2}\vartheta (\lambda_{\textrm{macro}}+2\mu_{\textrm{macro}} ) & 0\\ 0 & 0 & (\widetilde{\mathbb{C}}_{\textrm{macro}} )_{44} \end{array}\displaystyle \right ), \end{aligned}$$

thus, for \(\rho\omega^{2}\delta_{\mathit{im}}-k^{2} (\mathbb{C}_{\textrm{macro}}){}_{\mathit{ijmn}}\widehat{k}_{j}\widehat{k}_{n}\), we find

$$\begin{aligned} &\left ( \textstyle\begin{array}{c} \rho\omega^{2}-k^{2} (\mu_{\textrm{macro}}^{\ast}\sin^{2}\vartheta +\cos^{2}\vartheta (\lambda_{\textrm{macro}}+2\mu_{\textrm{macro}} ) ) \\ -k^{2}\cos\vartheta\sin\vartheta (\mu_{\textrm{macro}}^{\ast }+\lambda_{\textrm{macro}} ) \\ 0 \end{array}\displaystyle \right. \\ & \quad \left . \textstyle\begin{array}{c@{\quad}c} -k^{2}\cos\vartheta\sin\vartheta (\mu_{\textrm{macro}}^{\ast }+\lambda_{\textrm{macro}} ) & 0 \\ \rho\omega^{2}-k^{2} (\mu_{\textrm{macro}}^{\ast }\cos^{2}\vartheta+\sin^{2}\vartheta (\lambda_{\textrm{macro}}+2\mu_{\textrm{macro}} )) &0 \\ 0 &\rho\omega^{2}- (\widetilde{\mathbb{C}}_{\textrm{macro}} )_{44}k^{2} \end{array}\displaystyle \right ). \end{aligned}$$

In this way we can compute

$$\begin{aligned} &\det \bigl(\rho\omega^{2}\delta_{im}-k^{2} (\mathbb{C}_{\textrm{macro}}){}_{ijmn}\widehat{k}_{j}\widehat{k}_{n} \bigr) \\ & \quad = \bigl(\rho\omega^{2}- (\widetilde{\mathbb{C}}_{\textrm{macro}} )_{44}k^{2} \bigr) \bigl[ \bigl(\rho\omega ^{2}-k^{2} \bigl(\cos^{2}\vartheta(\lambda_{\textrm{macro}}+2 \mu_{\textrm{macro}})+\mu_{\textrm{macro}}^{\ast}\sin^{2}\vartheta \bigr) \bigr) \\ & \qquad \times \bigl(\rho\omega^{2}-k^{2} \bigl(\sin ^{2}\vartheta(\lambda_{\textrm{macro}}+2\mu_{\textrm{macro}})+\mu_{\textrm{macro}}^{\ast}\cos ^{2} \vartheta \bigr) \bigr) \\ &\qquad {}-k^{4}\sin^{2} \vartheta\cos^{2} \vartheta \bigl(\lambda_{\textrm{macro}}+\mu_{\textrm{macro}}^{\ast} \bigr){}^{2} \bigr]. \end{aligned}$$
(26)

The dispersion curves for the classical limit Cauchy model are obtained solving the equation (23), or equivalently (26), with respect to \(\omega^{2}\). We call \(\{ \pm\omega_{\textrm {macro},i} (k,\vartheta ) \} _{i=1}^{3}\) the dispersion curves for the Cauchy continuum obtained by solving (23) for the special tetragonal case given in (26). A direct calculation shows that the positive solutions \(\{ \omega _{\textrm{macro},i} (k,\vartheta ) \} _{i=1}^{3}\) of (23) for the tetragonal case are three straight lines in the \((\omega,k )\) plane with slopes (here, and only here, we use the abbreviations \(\mu_{M}=\mu_{\textrm{macro}}\), \(\lambda_{M}=\lambda_{\textrm{macro}}\), \(\mu_{M}^{*}=\mu_{\textrm{macro}}^{*}\)):

$$\begin{aligned} a_{\mathrm{LA}} & =\sqrt{\frac{\lambda_{M}+\mu_{M}^{\ast}+2\mu_{M}+\sqrt{2\cos(4\vartheta)\left(\lambda_{M}+\mu_{M}\right)\left(\mu_{M}-\mu_{M}^{\ast}\right)+2\lambda_{M}\mu_{M}+\lambda_{M}^{2}+\mu_{M}^{\ast2}-2\mu_{M}\mu_{M}^{\ast}+2\mu_{M}^{2}}}{2\rho}}, \end{aligned}$$
(27)
$$\begin{aligned} a_{\mathrm{TA}} & =\sqrt{\frac{\lambda_{M}+\mu_{M}^{\ast}+2\mu_{M}-\sqrt{2\cos(4\vartheta)\left(\lambda_{M}+\mu_{M}\right)\left(\mu_{M}-\mu_{M}^{\ast}\right)+2\lambda_{M}\mu_{M}+\lambda_{M}^{2}+\mu_{M}^{\ast2}-2\mu_{M}\mu_{M}^{\ast}+2\mu_{M}^{2}}}{2\rho}}, \\ a_{\mathrm{TA}3} & =\sqrt{\frac{\left(\widetilde{\mathbb{C}}_{M}\right)_{44}}{\rho}}. \end{aligned}$$
(28)

Note the complete absence of the Cosserat couple modulus \(\mu_{c}\) in the latter formulas.

Such dispersion curves are called (in-plane) longitudinal-acoustic (LA), (in-plane) transverse-acoustic (TA) and (out-of-plane) transverse-acoustic (TA3) (see Fig. 9). Since in this paper we are interested only in vibrations in the \((x_{1},x_{2},0 )\) plane, the third acoustic line with slope \(a_{\mathrm{TA}3}\) will not be considered for the fitting procedure since it corresponds to out-of-plane vibrations.

Fig. 9
figure 9

Dispersion branches for the limiting tetragonal Cauchy continuum with \(\widehat{\boldsymbol{k}}= (1,0,0 )\)(a) and \(\widehat {\boldsymbol{k}}= (\sqrt{2}/2,\sqrt{2}/2,0 )\)(b)

One remarkable property of the relaxed micromorphic model is that the slopes of its acoustic curves close to the origin, are exactly given by the slopes of the acoustic lines (27) of the equivalent Cauchy continuum. More precisely, the slopes at zero of the acoustic branches of the dispersion curves as obtained via the relaxed micromorphic model can be computed by means of equations (27) when using the identities (17).

1.2 Dynamical Calculation of the Macroscopic Stiffness \(\mathbb{C}_{\textrm{macro}}\)

Based on the results of the previous Paragraph, we can compute the numerical values of the macroscopic parameters \(\mu_{\textrm{macro}},\lambda_{\textrm{macro}}\) and \(\mu_{\textrm{macro}}^{*}\) which represent the measure of the macroscopic stiffness of the considered tetragonal metamaterial. To this aim, considering the two directions of propagation \(\vartheta_{0}=0\) and \(\vartheta _{1}=\pi/4\), and accounting for the following assumptions on the involved constitutive parameters

$$\lambda_{\textrm{macro}}>0,\quad \mu_{\textrm{macro}}>0,\quad \mu_{\textrm{macro}}^{*}>0,\quad \lambda_{\textrm{macro}}+2\mu_{\textrm{macro}}- \mu_{\textrm{macro}}^{*}>0, $$

we set up the following system of algebraic equations:

$$\begin{aligned} \begin{aligned}[c] a_{\textrm{LA}} \bigl(\vartheta_{0},\lambda_{\textrm{macro}}, \mu_{\textrm{macro}},\mu_{\textrm{macro}}^{*} \bigr)=\sqrt{\frac{2\mu_{\textrm{macro}}+\lambda_{\textrm{macro}}}{\rho}} & = \overline{a}_{\textrm{LA}} (\vartheta_{0} ), \\ a_{\textrm{LA}} \bigl(\vartheta_{1},\lambda_{\textrm{macro}},\mu_{\textrm{macro}},\mu_{\textrm{macro}}^{*} \bigr)=\sqrt{\frac{\mu_{\textrm{macro}}+\mu_{\textrm{macro}}^{*}+\lambda_{\textrm{macro}}}{\rho}} & =\overline {a}_{\textrm{LA}} (\vartheta_{1} ), \\ a_{\textrm{TA}} \bigl(\vartheta_{0},\lambda_{\textrm{macro}},\mu_{\textrm{macro}},\mu_{\textrm{macro}}^{*} \bigr)=\sqrt{\frac{\mu_{\textrm{macro}}^{*}}{\rho}} & =\overline {a}_{\textrm{TA}} (\vartheta_{0} ), \\ a_{\textrm{TA}} \bigl(\vartheta_{1},\lambda_{\textrm{macro}},\mu_{\textrm{macro}},\mu_{\textrm{macro}}^{*} \bigr)=\sqrt{\frac{\mu_{\textrm{macro}}}{\rho}} & =\overline {a}_{\textrm{TA}} (\vartheta_{1} ). \end{aligned} \end{aligned}$$
(29)

This system of algebraic equations counts 4 equations and 3 unknowns. We use the first 3 equations to calculate the unknowns \(\lambda_{\textrm{macro}},\mu_{\textrm{macro}},\mu_{\textrm{macro}}^{*}\) and then plug the found values in the fourth equation. If our hypothesis according to which the metamaterial we are considering has a tetragonal symmetry is correct, the fourth equation has to be automatically satisfied. This is indeed the case.

The numerical values of the macroscopic parameters which are found with the described procedure are given in Table 7.

Table 7 Left: numerical values of the macroscopic parameters of the relaxed micromorphic model as obtained via the dynamical fitting and Bloch–Floquet analysis. Right: for comparison the values obtained by periodic homogenization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

d’Agostino, M.V., Barbagallo, G., Ghiba, ID. et al. Effective Description of Anisotropic Wave Dispersion in Mechanical Band-Gap Metamaterials via the Relaxed Micromorphic Model. J Elast 139, 299–329 (2020). https://doi.org/10.1007/s10659-019-09753-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-019-09753-9

Keywords

Mathematics Subject Classification

Navigation