Skip to main content
Log in

Ranking objectives of advertisements on Facebook by a fuzzy TOPSIS method

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

Social networking sites (SNSs) have become a vital medium for companies to place advertisements and setting an objective of advertisements on SNSs is an important issue of planning a business’s market strategy. The purpose of this work is to develop a fuzzy technique for order preference by similarity to an ideal solution (TOPSIS) method for evaluating and selecting objectives of advertisements on Facebook. In the proposed model, the fuzzy weighted ratings are defuzzified by a centroid method to generate distances of each alternative to the positive and negative ideal solutions. A fuzzy weighted normalized distances index is proposed to rank alternatives, and the centroid method is used for defuzzification. Formulas for the defuzzification of fuzzy weighted ratings and the fuzzy weighted normalized distances index are developed. A numerical example of evaluating objectives of advertisements on Facebook is used to demonstrate the feasibility of the proposed method. Example result reveals that the proposed fuzzy weighted normalized distances index is as effective as the crisp closeness coefficient in ranking objectives under the proposed fuzzy TOPSIS method. An experiment demonstrates that the rankings of objectives may be more likely to change as the gap between two linguistic weights that are assigned to fuzzy weighted normalized distances index increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Azizi, A., Aikhuele, D. O., & Souleman, F. S. (2015). A fuzzy TOPSIS model to rank automotive suppliers. Procedia Manufacturing, 2, 159–164.

    Google Scholar 

  2. Ballings, M., Poel, D. V. D., & Bogaert, M. (2016). Social media optimization: Identifying an optimal strategy for increasing network size on Facebook. Omega, 59, 15–25.

    Google Scholar 

  3. Bongo, M. F., & Ocampo, L. A. (2017). A hybrid fuzzy MCDM approach for mitigating airport congestion: A case in Ninoy Aquino International Airport. Journal of Air Transport Management, 63, 1–16.

    Google Scholar 

  4. Boyd, D. M., & Ellison, N. B. (2008). Social network sites: Definition, history and scholarship. Journal of Computer-Mediated Communication, 13, 210–230.

    Google Scholar 

  5. Büyüközkan, G., & Göçer, F. (2017). Application of a new combined intuitionistic fuzzy MCDM approach based on axiomatic design methodology for the supplier selection problem. Applied Soft Computing, 52, 1222–1238.

    Google Scholar 

  6. Carlsson, C., & Fullèr, R. (1996). Fuzzy multiple criteria decision making: Recent developments. Fuzzy Sets and Systems, 78(2), 139–153.

    Google Scholar 

  7. Chen, S. J., & Hwang, C. L. (1992). Fuzzy multiple attribute decision making. Berlin: Springer.

    Google Scholar 

  8. Chu, T. C., & Charnsethikul, P. (2013). Ordering alternatives under fuzzy multiple criteria decision making via a fuzzy number dominance based ranking approach. International Journal of Fuzzy Systems, 15(3), 263–273.

    Google Scholar 

  9. Chu, T. C., & Yeh, W. C. (2018). Fuzzy multiple criteria decision-making via an inverse function-based total utility approach. Soft Computing, 22(22), 7423–7433.

    Google Scholar 

  10. Comscore Media, M. (2009). Total number of unique visitors to selected social networking sites.

  11. Dehghani, M., & Tumer, M. (2015). A research on effectiveness of Facebook advertising on enhancing purchase intention of consumers. Computers in Human Behavior, 49, 597–600.

    Google Scholar 

  12. Das, S., & Guha, D. (2016). A centroid-based ranking method of trapezoidal intuitionistic fuzzy numbers and its application to MCDM problem. Fuzzy Information and Engineering, 8(1), 41–74.

    Google Scholar 

  13. Dayan, A. (2017). Stop choosing the wrong Facebook campaign objective, Oribi Blog. http://blog.oribi.io/choose-facebook-campaign-objective/. Accessed May 2019.

  14. Destercke, S., & Couso, I. (2015). Ranking of fuzzy intervals seen through the imprecise probabilistic lens. Fuzzy Sets and Systems, 278, 20–39.

    Google Scholar 

  15. Deveci, M., Demirel, N. C., & Ahmetoğlu, E. (2017). Airline new route selection based on interval type-2 fuzzy MCDM: A case study of new route between Turkey–North American Region destinations. Journal of Air Transport Management, 59, 83–99.

    Google Scholar 

  16. Doukas, H., Karakosta, C., & Psarras, J. (2010). Computing with words to assess the sustainability of renewable energy options. Expert Systems with Applications, 37(7), 5491–5497.

    Google Scholar 

  17. Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science, 9(6), 613–626.

    Google Scholar 

  18. Dymova, L., Sevastjanov, P., & Tikhonenko, A. (2013). An approach to generalization of fuzzy TOPSIS method. Information Sciences, 238, 149–162.

    Google Scholar 

  19. eMarketer. (2017). Worldwide social network users: eMarketer’s estimates and forecast for 2016–2021. eMarketer report.

  20. Facebook Newsroom-Key Facts. (2014). http://newsroom.fb.com/Key-Facts. Accessed Apr 2015.

  21. Facebook Company Information. (2016). Retrieved from http://newsroom.fb.com/company-info/. Accessed June 2017.

  22. Facebook Business (Ads Help Center). (2019). https://www.facebook.com/business/help. Accessed May 2019.

  23. Falls, J. (2009). Public relations pros must be social media ready. Social Media Explorer. https://www.socialmediatoday.com/news/public-relations-pros-must-be-social-media-ready/486039/. Accessed Apr 2015.

  24. Gerber, G. (2010). Social media offers new opportunities and risks. Journal of the American Optometric Association, 81, 548–550.

    Google Scholar 

  25. Gupta, H., & Barua, M. K. (2017). Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. Journal of Cleaner Production, 152, 242–258.

    Google Scholar 

  26. Hatami-Marbini, A., & Kangi, F. (2017). An extension of Fuzzy TOPSIS for a group decision making with an application to Tehran stock exchange. Applied Soft Computing, 52, 1084–1097.

    Google Scholar 

  27. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications: A state-of-the-art survey. New York: Springer.

    Google Scholar 

  28. Issa, U. H., Miky, Y. H., & Abdel-Malak, F. F. (2019). A decision support model for civil engineering projects based on multi-criteria and various data. Journal of Civil Engineering and Management, 25(2), 100–113.

    Google Scholar 

  29. Johns, R., & Perrot, B. (2008). The impact of internet banking on business customer relationship: Are you being self-served? International Journal of Bank Marketing, 26(7), 465–482.

    Google Scholar 

  30. Kahraman, C. (2008). Fuzzy multi-criteria decision making: Theory and applications with recent developments. New York: Springer.

    Google Scholar 

  31. Kaufmann, A., & Gupta, M. M. (1991). Introduction to fuzzy arithmetic: Theory and application. New York: Van Nostrand Reinhold, 1985.

  32. Koulinas, G. K., Demesouka, O. E., Marhavilas, P. K., Vavatsikos, A. P., & Koulouriotis, D. E. (2019). Risk assessment using fuzzy TOPSIS and PRAT for sustainable engineering projects. Sustainability, 11(615), 1–15.

    Google Scholar 

  33. Kuo, T. (2017). A modified TOPSIS with a different ranking index. European Journal of Operational Research, 260, 152–160.

    Google Scholar 

  34. Lawrance, C. (2016). 14 Facebook advertising objectives you need to know. Blog. https://charlielawrance.com/how-to-choose-the-right-facebook-advertising-objective/. Accessed May 2019.

  35. Li, C. C., Dong, Y., Herrera, F., Herrera-Viedma, E., & Martínez, L. (2017). Personalized individual semantics in computing with words for supporting linguistic group decision making. an application on consensus reaching. Information Fusion, 33, 29–40.

    Google Scholar 

  36. Liang, T. P., & Turban, E. (2011). Introduction to the special issue social commerce: A research framework for social commerce. International Journal of Electronic Commerce, 16(2), 5–14.

    Google Scholar 

  37. Liao, C. N., & Kao, H. P. (2011). An integrated fuzzy TOPSIS and MCGP approach to supplier selection in supply chain management. Expert Systems with Applications, 38(9), 10803–10811.

    Google Scholar 

  38. Lima, F. R., Osiro, L., & Carpinetti, L. C. R. (2014). A comparison between fuzzy AHP and fuzzy TOPSIS methods to supplier selection. Applied Soft Computing, 21, 194–209.

    Google Scholar 

  39. Mahmood, A., & Sismeiro, C. (2017). Will they come and will they stay? Online social networks and news consumption on external websites. Journal of Interactive Marketing, 37, 117–132.

    Google Scholar 

  40. Mamonov, S., & Benbunan-Fich, R. (2017). Exploring factors affecting social e-commerce service adoption: The case of Facebook gifts. International Journal of Information Management, 37, 590–600.

    Google Scholar 

  41. Michaelidou, N., Siamagka, N. T., & Christodoulides, G. (2011). Usage, barriers and measurement of social media marketing: An exploratory investigation of small and medium B2C brands. Industrial Marketing Management, 40, 1153–1159.

    Google Scholar 

  42. Morteza, Z., Reza, F. M., Seddiq, M. M., Sharareh, P., & Jamal, G. (2016). Selection of the optimal tourism site using the ANP and fuzzy TOPSIS in the framework of Integrated Coastal Zone Management: A case of Qeshm Island. Ocean and Coastal Management, 130, 179–187.

    Google Scholar 

  43. Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Re search, 156(2), 445–455.

    Google Scholar 

  44. Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of knowledge management adoption in supply chain to overcome its barriers. Expert Systems with Applications, 41(2), 679–693.

    Google Scholar 

  45. Roszkowska, E., & Wachowicz, T. (2015). Application of fuzzy TOPSIS to scoring the negotiation offers in ill-structured negotiation problems. European Journal of Operational Research, 242, 920–932.

    Google Scholar 

  46. Salih, M. M., Zaidan, B. B., Zaidan, A. A., & Ahmed, M. A. (2019). Survey on fuzzy TOPSIS state-of-the art between 2007 and 2017. Computers & Operations Research, 104, 207–227.

    Google Scholar 

  47. Şengül, Ü., Eren, M., Shiraz, S. E., Gezder, V., & Şengül, A. B. (2015). Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy, 75, 617–625.

    Google Scholar 

  48. Seyedmohammadi, J., Sarmadian, F., Jafarzadeh, A. A., Ghorbani, M. A., & Shahbazi, F. (2018). Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma, 310, 178–190.

    Google Scholar 

  49. Shiatis, C. (2019). Why choosing the right Facebook campaign objective is critical to your advertising success, Yello Veedub. https://www.yelloveedub.com/blog/why-choosing-the-right-facebook-campaign-objective-is-critical-to-your-advertising-success. Accessed May 2019.

  50. Smock, A. D., Ellison, N. B., Lampe, C., & Wohn, D. Y. (2011). Facebook As a toolkit: A uses and gratification approach to unbundling feature use. Computers in Human Behavior, 27(6), 2322–2329.

    Google Scholar 

  51. Stewart, J. B. (2016). Facebook has 50 minutes of your time each day. It wants more. The New York Times.

  52. Taylan, O., Bafail, A. O., Abdulaal, R. M. S., & Kabli, M. R. (2014). Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Applied Soft Computing, 17, 105–116.

    Google Scholar 

  53. Torfi, F., Farahani, R. Z., & Mahdavi, I. (2016). Fuzzy MCDM for weight of object’s phrase in location routing problem. Applied Mathematical Modelling, 40(1), 526–541.

    Google Scholar 

  54. Torfi, F., Farahani, R. Z., & Rezapour, S. (2010). Fuzzy AHP to determine the relative weights of evaluation criteria and Fuzzy TOPSIS to rank the alternatives. Applied Soft Computing, 10(2), 520–528.

    Google Scholar 

  55. Wang, Y. J., & Lee, H. S. (2008). The revised method of ranking fuzzy numbers with an area between the centroid and original points. Computers & Mathematics with Applications, 55(9), 2033–2042.

    Google Scholar 

  56. Wang, Y. M., Yang, J. B., Xu, D. L., & Chin, K. S. (2006). On the centroids of fuzzy numbers. Fuzzy Sets and Systems, 157(7), 919–926.

    Google Scholar 

  57. Wang, X., & Kerre, E. E. (2001). Reasonable properties for the ordering of fuzzy quantities (I) & (II). Fuzzy Sets and Systems, 118(3), 375–385, 387–405.

  58. Yager, R. R. (1978). Ranking fuzzy subsets over the unit interval. In Proceedings of 17th IEEE Conference on Cybernetics and Society (pp. 921–925).

  59. Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information sciences, 24, 143–161.

    Google Scholar 

  60. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Google Scholar 

  61. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning, part 1, 2 and 3. Information Science, 8(3), 199–249; Vol. 8, No. 4, pp. 301–357; Vol. 9, No. 1, pp. 43–80.

  62. Zadeh, L. A. (1999). From computing with numbers to computing with words—From manipulation of measurements to manipulation of perceptions. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 45(1), 105–119.

    Google Scholar 

  63. Zadeh, L. A. (2002). Fuzzy computing with numbers to computing with words. From manipulation of measurements to manipulation of perceptions. International Journal of Applied Mathematics and Computer Science, 12(3), 307–324.

    Google Scholar 

  64. Zouggari, A., & Benyoucef, L. (2012). Simulation based fuzzy TOPSIS approach for group multi-criteria supplier selection problem. Engineering Applications of Artificial Intelligence, 25(3), 507–519.

    Google Scholar 

  65. Zyoud, S. H., Kaufmann, L. G., Shaheen, H., Samhan, S., & Fuchs-Hanusch, D. (2016). A framework for water loss management in developing countries under fuzzy environment: Integration of fuzzy AHP with fuzzy TOPSIS. Expert Systems with Applications, 61, 86–105.

    Google Scholar 

Download references

Acknowledgements

The authors would like to sincerely thank the anonymous referees and Prof. Bestak for providing very helpful comments and suggestions. Their insights and comments led to a better presentation of the ideas expressed in this work. This work was supported in part by Ministry of Science and Technology of the Republic of China, Taiwan, under Grant MOST 108-2410-H-218-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta-Chung Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Equation (4.11) is derived as follows.

$$ \begin{aligned} P_{ij2} & = \int_{{Y_{ij} }}^{{Z_{ij} }} {x\mu_{{\tilde{v}_{ij} }}^{R} (x)dx} = \int_{{Y_{ij} }}^{{Z_{ij} }} {x\left( {\frac{{ - K_{ij2} - \sqrt {K_{ij2}^{2} - 4L_{ij2} (Z_{ij} - x)} }}{{2L_{ij2} }}} \right)dx} \\ & = \int_{{Y_{ij} }}^{{Z_{ij} }} {\left( {\frac{{ - K_{ij2} }}{{2L_{ij2} }}} \right)xdx} - \frac{1}{{2L_{ij2} }}\int_{{Y_{ij} }}^{{Z_{ij} }} {\left( {\sqrt {K_{ij2}^{2} - 4L_{ij2} (Z_{ij} - x)} } \right)xdx} \\ \end{aligned} $$
(7.1)

Let

$$ \begin{aligned} & \sqrt {K_{ij2}^{2} - 4L_{ij2} (Z_{ij} - x)} = t \\ & \Rightarrow \frac{d}{dt}x = \frac{d}{dt}\frac{{t^{2} - K_{ij2}^{2} + 4L_{ij2} Z_{ij} }}{{4L_{ij2} }} = \frac{t}{{2L_{ij2} }}dt \\ \end{aligned} $$
(7.2)
$$ {\text{If }}x = Z_{ij} ,\,t = K_{ij2} \,{\text{and}}\,{\text{If}}\,x = Y_{ij} , \, t = \sqrt {K_{ij2}^{2} - 4L_{ij2} (Z_{ij} - Y_{ij} )} = Y_{ij}^{{\prime \prime }} . $$
(7.3)

Apply Eqs. (7.2)–(7.3) to Eq. (7.1) to obtain:

$$ \begin{aligned} & P_{ij2} = \frac{{K_{ij2} (Y_{ij}^{2} - Z_{ij}^{2} )}}{{4L_{ij2} }} - \frac{1}{{2L_{ij2} }}\int_{{Y_{ij}^{''} }}^{{K_{ij2} }} {t\frac{{t^{2} - K_{ij2}^{2} + 4L_{ij2} Z_{ij} }}{{4L_{ij2} }}\frac{t}{{2L_{ij2} }}dt} \\ & \Rightarrow P_{ij2} = \frac{{K_{ij2} (Y_{ij}^{2} - Z_{ij}^{2} )}}{{4L_{ij2} }} - \frac{1}{{16L_{ij2}^{3} }}\left[ {\frac{{K_{ij2}^{5} - Y_{ij}^{{{\prime \prime }5}} }}{5} + \frac{{K_{ij2}^{3} - Y_{ij}^{{{\prime \prime }3}} }}{3}( - K_{ij2}^{2} + 4L_{ij2} Z_{ij} )} \right] \\ & \;{\text{where}}\,Y_{ij}^{{\prime \prime }} = \sqrt {K_{ij2}^{2} - 4L_{ij2} (Z_{ij} - Y_{ij} )} . \\ \end{aligned} $$
(4.11)

Equation (4.12) is derived as follows.

$$ \begin{aligned} P_{ij3} & = \int_{{Q_{ij} }}^{{Y_{ij} }} {\mu_{{\tilde{v}_{ij} }}^{L} (x)dx} = \int_{{Q_{ij} }}^{{Y_{ij} }} {\left( {\frac{{ - K_{ij1} + \sqrt {K_{ij1}^{2} - 4L_{ij1} (Q_{ij} - x)} }}{{2L_{ij1} }}} \right)dx} \\ & = \int_{{Q_{ij} }}^{{Y_{ij} }} {\left( {\frac{{ - K_{ij1} }}{{2L_{ij1} }}} \right)dx} + \frac{1}{{2L_{ij1} }}\int_{{Q_{ij} }}^{{Y_{ij} }} {\left( {\sqrt {K_{ij1}^{2} - 4L_{ij1} (Q_{ij} - x)} } \right)dx} \\ \end{aligned} $$
(7.4)

Let

$$ \begin{aligned} & \sqrt {K_{ij1}^{2} - 4L_{ij1} (Q_{ij} - x)} = t \\ & \Rightarrow \frac{d}{dt}x = \frac{d}{dt}\frac{{t^{2} - K_{ij1}^{2} + 4L_{ij1} Q_{ij} }}{{4L_{ij1} }} = \frac{t}{{2L_{ij1} }}dt \\ \end{aligned} $$
(7.5)
$$ {\text{If }}x = Q_{ij} , \, t = K_{ij1} \,{\text{and}}\,{\text{If}}\, .x = Y_{ij} , \, t = \sqrt {K_{ij1}^{2} - 4L_{ij1} (Q_{ij} - Y_{ij} )} = Y_{ij}^{'} $$
(7.6)

Apply Eqs. (7.5)–(7.6) to Eq. (7.4) to obtain:

$$ \begin{aligned} & P_{ij3} = \frac{{K_{ij1} (Q_{ij} - Y_{ij} )}}{{2L_{ij1} }} + \frac{1}{{2L_{ij1} }}\int_{{K_{ij1} }}^{{Y_{ij}^{'} }} {t\frac{t}{{2L_{ij1} }}dt} \\ & \Rightarrow P_{ij3} = \frac{{K_{ij1} (Q_{ij} - Y_{ij} )}}{{2L_{ij1} }} + \frac{{Y_{ij}^{'3} - K_{ij1}^{3} }}{{12L_{ij1}^{2} }},\,{\text{where}}\,Y_{ij}^{'} = \sqrt {K_{ij1}^{2} - 4L_{ij1} (Q_{ij} - Y_{ij} )} \\ \end{aligned} $$
(4.12)

Equation (4.13) is derived as follows.

$$ \begin{aligned} P_{ij4} & = \int_{{Y_{ij} }}^{{Z_{ij} }} {\mu_{{\tilde{v}_{ij} }}^{R} (x)dx} = \int_{{Y_{ij} }}^{{Z_{ij} }} {\left( {\frac{{ - K_{ij2} - \sqrt {K_{ij2}^{2} - 4L_{ij2} (Z_{ij} - x)} }}{{2L_{ij2} }}} \right)dx} \\ & = \int_{{Y_{ij} }}^{{Z_{ij} }} {\left( {\frac{{ - K_{ij2} }}{{2L_{ij2} }}} \right)dx} - \frac{1}{{2L_{ij2} }}\int_{{Y_{ij} }}^{{Z_{ij} }} {\left( {\sqrt {K_{ij2}^{2} - 4L_{ij2} (Z_{ij} - x)} } \right)dx} \\ \end{aligned} $$
(7.7)

Let

$$ \begin{aligned} & \sqrt {K_{ij2}^{2} - 4L_{ij2} (Z_{ij} - x)} = t \\ & \Rightarrow \frac{d}{dt}x = \frac{d}{dt}\frac{{t^{2} - K_{ij2}^{2} + 4L_{ij2} Z_{ij} }}{{4L_{ij2} }} = \frac{t}{{2L_{ij2} }}dt \\ \end{aligned} $$
(7.8)
$$ {\text{If }}x = Z_{ij} , \, t = K_{ij2} \,{\text{and}}\,{\text{If }}x = Y_{ij} , \, t = \sqrt {K_{ij2}^{2} - 4L_{ij2} (Z_{ij} - Y_{ij} )} = Y_{ij}^{''} . $$
(7.9)

Apply Eqs. (7.8)–(7.9) to Eq. (7.7) to obtain:

$$ \begin{aligned} & P_{ij4} = \frac{{K_{ij2} (Y_{ij} - Z_{ij} )}}{{2L_{ij2} }} - \frac{1}{{2L_{ij2} }}\int_{{Y_{ij}^{''} }}^{{K_{ij2} }} {t\frac{t}{{2L_{ij2} }}dt} \\ & \Rightarrow P_{ij4} = \frac{{K_{ij2} (Y_{ij} - Z_{ij} )}}{{2L_{ij2} }} - \frac{{K_{ij2}^{3} - Y_{ij}^{''3} }}{{12L_{ij2}^{2} }},\,{\text{where}}\,Y_{ij}^{''} = \sqrt {K_{ij2}^{2} - 4L_{ij2} (Z_{ij} - Y_{ij} )} . \\ \end{aligned} $$
(4.13)

Appendix 2

Equations (23)–(25) are derived by the following procedure.

$$ \begin{aligned} P_{i2} & = \int_{{r_{ib} }}^{{r_{ic} }} {x\mu_{{\tilde{R}_{i} }}^{R} (x)dx} \\ & = \int_{{r_{ib} }}^{{r_{ic} }} {x\frac{{x - r_{ic} }}{{r_{ib} - r_{ic} }}dx} = \frac{{ - 2r_{ib}^{3} + 3r_{ib}^{2} r_{ic} - r_{ic}^{3} }}{{6(r_{ib} - r_{ic} )}}. \\ \end{aligned} $$
(4.23)
$$ \begin{aligned} P_{i3} & = \int_{{r_{ia} }}^{{r_{ib} }} {\mu_{{\tilde{R}_{i} }}^{L} (x)dx} \\ & = \int_{{r_{ia} }}^{{r_{ib} }} {\frac{{x - r_{ia} }}{{r_{ib} - r_{ia} }}dx} = \frac{{r_{ib} - r_{ia} }}{2}. \\ \end{aligned} $$
(4.24)
$$ \begin{aligned} P_{i4} & = \int_{{r_{ib} }}^{{r_{ic} }} {\mu_{{\tilde{R}_{i} }}^{R} (x)dx} \\ & = \int_{{r_{ib} }}^{{r_{ic} }} {\frac{{x - r_{ic} }}{{r_{ib} - r_{ic} }}dx} = \frac{{r_{ic} - r_{ib} }}{2}. \\ \end{aligned} $$
(4.25)

Appendix 3

See Tables 22, 23, 24, 25, 26, 27 and 28.

Table 22 \( K_{ij1} \) of membership functions
Table 23 \( K_{ij2} \) of membership functions
Table 24 \( L_{ij1} \) of membership functions
Table 25 \( L_{ij2} \) of membership functions
Table 26 \( Q_{ij} \) of membership functions
Table 27 \( Y_{ij} \) of membership functions
Table 28 \( Z_{ij} \) of membership functions

Appendix 4

Ranking values of Tables 12, 13, 14, 15 and 16

 

A1

A2

A3

A4

A5

A6

A7

\( R_{i} ({\text{I,I}}) \)

0.1705

0.1164

0.1081

0.1451

0.1302

0.1325

0.1306

\( R_{i} ({\text{I,SS}}) \)

0.3361

0.2493

0.2372

0.2956

0.2699

0.2753

0.2700

\( R_{i} ({\text{I,FS}}) \)

0.5348

0.4087

0.3920

0.4762

0.4376

0.4466

0.4374

\( R_{i} ({\text{I,S}}) \)

0.7336

0.5682

0.5469

0.6568

0.6053

0.6179

0.6047

\( R_{i} ({\text{I,VS}}) \)

0.8992

0.7010

0.6760

0.8073

0.7450

0.7606

0.7441

 

A1

A2

A3

A4

A5

A6

A7

\( R_{i} (\text{SS} ,I) \)

0.2179

0.1290

0.1141

0.1760

0.1532

0.1554

0.1544

\( R_{i} ({\text{SS,SS}}) \)

0.3836

0.2619

0.2432

0.3265

0.2929

0.2982

0.2938

\( R_{i} ({\text{SS,FS}}) \)

0.5823

0.4213

0.3981

0.5071

0.4606

0.4695

0.4612

\( R_{i} ({\text{SS,S}}) \)

0.7810

0.5808

0.5530

0.6877

0.6283

0.6408

0.6285

\( R_{i} ({\text{SS,VS}}) \)

0.9467

0.7137

0.6820

0.8382

0.7680

0.7836

0.7679

 

A1

A2

A3

A4

A5

A6

A7

\( R_{i} ({\text{FS,I}}) \)

0.2749

0.1441

0.1214

0.2130

0.1808

0.1829

0.1829

\( R_{i} ({\text{FS,SS}}) \)

0.4405

0.2770

0.2504

0.3635

0.3205

0.3257

0.3224

\( R_{i} ({\text{FS,FS}}) \)

0.6393

0.4364

0.4053

0.5441

0.4882

0.4970

0.4897

\( R_{i} ({\text{FS,S}}) \)

0.8380

0.5959

0.5602

0.7247

0.6559

0.6683

0.6570

\( R_{i} ({\text{FS,VS}}) \)

1.0036

0.7288

0.6893

0.8752

0.7956

0.8110

0.7965

 

A1

A2

A3

A4

A5

A6

A7

\( R_{i} ({\text{S,I}}) \)

0.3318

0.1592

0.1286

0.2500

0.2084

0.2104

0.2115

\( R_{i} ({\text{S,SS}}) \)

0.4975

0.2921

0.2577

0.4005

0.3481

0.3532

0.3509

\( R_{i} ({\text{S,FS}}) \)

0.6962

0.4516

0.4126

0.5811

0.5158

0.5245

0.5182

\( R_{i} ({\text{S,S}}) \)

0.8950

0.6110

0.5675

0.7617

0.6835

0.6958

0.6856

\( R_{i} ({\text{S,VS}}) \)

1.0606

0.7439

0.6965

0.9122

0.8232

0.8385

0.8250

 

A1

A2

A3

A4

A5

A6

A7

\( R_{i} ({\text{VS,I}}) \)

0.3793

0.1718

0.1346

0.2809

0.2314

0.2333

0.2353

\( R_{i} ({\text{VS,SS}}) \)

0.5449

0.3047

0.2637

0.4314

0.3711

0.3761

0.3747

\( R_{i} ({\text{VS,FS}}) \)

0.7437

0.4642

0.4186

0.6120

0.5388

0.5474

0.5420

\( R_{i} ({\text{VS,S}}) \)

0.9424

0.6236

0.5735

0.7926

0.7065

0.7187

0.7094

\( R_{i} ({\text{VS,VS}}) \)

1.1080

0.7565

0.7026

0.9431

0.8462

0.8614

0.8488

Ranking values of Tables 17, 18, 19, 20 and 21

 

A1

A2

A3

A4

A5

A6

A7

\( R_{i} ({\text{I,I}}) \)

0.1705

0.1164

0.1081

0.1451

0.1302

0.1325

0.1306

\( R_{i} ({\text{SS,I}}) \)

0.2179

0.1290

0.1141

0.1760

0.1532

0.1554

0.1544

\( R_{i} ({\text{FS,I}}) \)

0.2749

0.1441

0.1214

0.2130

0.1808

0.1829

0.1829

\( R_{i} ({\text{S,I}}) \)

0.3318

0.1592

0.1286

0.2500

0.2084

0.2104

0.2115

\( R_{i} ({\text{VS,I}}) \)

0.3793

0.1718

0.1346

0.2809

0.2314

0.2333

0.2353

 

A1

A2

A3

A4

A5

A6

A7

\( R_{i} (I,{\text{SS}}) \)

0.3361

0.2493

0.2372

0.2956

0.2699

0.2753

0.2700

\( R_{i} ({\text{SS,SS}}) \)

0.3836

0.2619

0.2432

0.3265

0.2929

0.2982

0.2938

\( R_{i} ({\text{FS,SS}}) \)

0.4405

0.2770

0.2504

0.3635

0.3205

0.3257

0.3224

\( R_{i} ({\text{S,SS}}) \)

0.4975

0.2921

0.2577

0.4005

0.3481

0.3532

0.3509

\( R_{i} ({\text{VS,SS}}) \)

0.5449

0.3047

0.2637

0.4314

0.3711

0.3761

0.3747

 

A1

A2

A3

A4

A5

A6

A7

\( R_{i} ({\text{I,FS}}) \)

0.5348

0.4087

0.3920

0.4762

0.4376

0.4466

0.4374

\( R_{i} ({\text{SS,FS}}) \)

0.5823

0.4213

0.3981

0.5071

0.4606

0.4695

0.4612

\( R_{i} ({\text{FS,FS}}) \)

0.6393

0.4364

0.4053

0.5441

0.4882

0.4970

0.4897

\( R_{i} ({\text{S,FS}}) \)

0.6962

0.4516

0.4126

0.5811

0.5158

0.5245

0.5182

\( R_{i} ({\text{VS,FS}}) \)

0.7437

0.4642

0.4186

0.6120

0.5388

0.5474

0.5420

 

A1

A2

A3

A4

A5

A6

A7

\( R_{i} ({\text{I,S}}) \)

0.7336

0.5682

0.5469

0.6568

0.6053

0.6179

0.6047

\( R_{i} ({\text{SS,S}}) \)

0.7810

0.5808

0.5530

0.6877

0.6283

0.6408

0.6285

\( R_{i} ({\text{FS,S}}) \)

0.8380

0.5959

0.5602

0.7247

0.6559

0.6683

0.6570

\( R_{i} ({\text{S,S}}) \)

0.8950

0.6110

0.5675

0.7617

0.6835

0.6958

0.6856

\( R_{i} ({\text{VS,S}}) \)

0.9424

0.6236

0.5735

0.7926

0.7065

0.7187

0.7094

 

A1

A2

A3

A4

A5

A6

A7

\( R_{i} ({\text{I,VS}}) \)

0.8992

0.7010

0.6760

0.8073

0.7450

0.7606

0.7441

\( R_{i} ({\text{SS,VS}}) \)

0.9467

0.7137

0.6820

0.8382

0.7680

0.7836

0.7679

\( R_{i} ({\text{FS,VS}}) \)

1.0036

0.7288

0.6893

0.8752

0.7956

0.8110

0.7965

\( R_{i} ({\text{S,VS}}) \)

1.0606

0.7439

0.6965

0.9122

0.8232

0.8385

0.8250

\( R_{i} ({\text{VS,VS}}) \)

1.1080

0.7565

0.7026

0.9431

0.8462

0.8614

0.8488

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, TC., Kysely, M. Ranking objectives of advertisements on Facebook by a fuzzy TOPSIS method. Electron Commer Res 21, 881–916 (2021). https://doi.org/10.1007/s10660-019-09394-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-019-09394-z

Keywords

Navigation