Skip to main content

Advertisement

Log in

Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Clay loam soil from agricultural field of Gangetic alluvial zone of West Bengal was investigated to evaluate the effect of chlorpyrifos application at field rate (0.5 mg kg − 1 soil) and 100 times of the field rate (50 mg kg − 1 soil) on soil microbial variables under laboratory conditions. Acetone-induced stress on soil microorganisms was evident in the initial stages in terms of microbial biomass carbon (MBC) content in soil and basal soil respiration (BSR) in control soil samples which received acetone only as compared to control soil without acetone. The soil MBC content increased significantly by application of chlorpyrifos. The BSR and the fluorescein diacetate hydrolysing activity (FDHA) were not adversely affected by chlorpyrifos at field rate, whilst the chemical at higher dosage significantly decreased the metabolic activities of soil microbes in terms of BSR and FDHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry, 33, 943–951. doi:10.1016/S0038-0717(00)00244-3.

    Article  CAS  Google Scholar 

  • Adityachaudhury, N., Banerjee, H., & Kole, R. K. (1997). An appraisal of pesticide use in Indian agriculture with special reference to their consumption in West Bengal. Science and Culture, 63, 223–228.

    Google Scholar 

  • Alef, K. (1995a). Estimation of soil respiration. In K. Alef, & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 215–216). London: Academic.

    Google Scholar 

  • Alef, K. (1995b). Estimation of FDA acitivity. In K. Alef, & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 132–135). London: Academic.

    Google Scholar 

  • Federle, T., Dobbins, D. C., Thornton-Manning, J. R., & Jones, D. C. (1986). Microbial biomass, activity, and community structure in subsurface soils. Ground Water, 24, 365–374. doi:10.1111/j.1745-6584.1986.tb01013.x.

    Article  CAS  Google Scholar 

  • Federle, T. W. (1988). Mineralization of mono-substituted aromatic compounds in unsaturated and saturated subsurface soils. Canadian Journal of Microbiology, 34, 1037–1042.

    Article  CAS  Google Scholar 

  • Gray, T. R. G. (1990). Methods for studying the microbial ecology of soil. In R. Grigorova, & J. R. Norris (Eds.), Methods in microbiology (vol. 22, pp. 309–342). London: Academic.

    Google Scholar 

  • Gregorich, E. A., Carter, M. A., Augers, D. A., Monreal, C. M., & Ellert B. H. (1994). Towards a minimum dataset to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science, 74, 367–385.

    CAS  Google Scholar 

  • Handa, S. K., Agnihotri, N. P., & Kulshrestha, G. (1999). Pesticide residues: Significance, management and analysis (pp. 184–198). Texas, USA: Research Periodicals and Book Publishing House.

    Google Scholar 

  • Ingram, C. W., Coyne, M. S., & Williams, D. W. (2005). Effects of commercial diazinon and imidacloprid on microbial urease activity in soil and sod. Journal of Environmental Quality, 34, 1573–1580. doi:10.2134/jeq2004.0433.

    Article  CAS  Google Scholar 

  • Joergensen, R. G. (1995). Microbial biomass. In K. Alef, & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 382–386). London: Academic.

    Google Scholar 

  • Kale, S. P., & Raghu, K. (1989). Effect of carbofuran and its degradation products on microbial numbers and respiration in soils. Chemosphere, 18, 2345–2351.

    CAS  Google Scholar 

  • Lethbridge, G., & Burns, R. G. (1975). Inhibition of soil urease by organophosphorus insecticides. Soil Biology & Biochemistry, 8, 99–102. doi:10.1016/0038-0717(76)90072-9.

    Article  Google Scholar 

  • Lethbridge, G., Pettit, N. M., Smith, A. R. J., & Burns, R. G. (1976). The effect of organic solvents on soil urease activity. Soil Biology & Biochemistry, 85, 449–450. doi:10.1016/0038-0717(76)90049-3.

    Article  Google Scholar 

  • Linan, C. (1994). Vademecum de products fitosanitarios 10th edn. Madrid, Spain: Ediciones Agrotecnicas.

    Google Scholar 

  • Martinez, T. M. V., Salmeron, V., & Gonzalez, J. (1992a). Effect of an organo-phosphorus insecticide, phenophos on agricultural soil microflora. Chemosphere, 24, 71–80. doi:10.1016/0045-6535(92)90568-C.

    Article  Google Scholar 

  • Martinez, T. M. V., Salmeron, V., & Gonzalez, J. (1992b). Effect of the insecticides methyl-pyrimifos and chlorpyrifos on soil micro-flora in an agricultural loam. Plant and Soil, 147, 25–30. doi:10.1007/BF00009367.

    Article  Google Scholar 

  • Moorman, T. B. (1989). A review of pesticide effects on microorganisms and microbial processes related to soil fertility. Journal of Production Agriculture, 2, 14–23.

    Google Scholar 

  • Pandey, S., & Singh, D. K. (2004). Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soils. Chemosphere, 55, 283–290. doi:10.1016/j.chemosphere.2003.10.052.

    Article  CAS  Google Scholar 

  • Perucci, P., Scarponi, L., Anderson, J. P. E., Arnold, D. J., Lewis, F., & Torstenson, L. (1992). Interference on soil microbial biomass and persistence of trifluralin in a clay soil. In Proceedings of the international symposium on environmental aspects of pesticide microbiology, 17–21 August 1992, Sigtuna, Sweden, pp. 129–134.

  • Pozo, C., Martinez, T. M. V., Salmeron, V., Rodelas, B., & Gonzalez, L. J. (1995). Effect of chlorpyrifos on soil microbial activity. Environmental Toxicology and Chemistry, 14, 187–192. doi:10.1897/1552-8618(1995)14[187:EOCOSM]2.0.CO;2.

    Article  CAS  Google Scholar 

  • Racke, K. D., Fontaine, D. D., Yoder, R. N., & Miller, J. R. (1994). Chlorpyrifos degradations in soil at termiticidal application rates. Pesticide Science, 42, 43–51. doi:10.1002/ps.2780420108.

    Article  CAS  Google Scholar 

  • Racke, K. D., Laskowski, D. A., & Schultz, M. R. (1990). Resistance of chlorpyrifos to enhanced biodegradation in soil. Journal of Agricultural and Food Chemistry, 38, 1430–1436. doi:10.1021/jf00096a029.

    Article  CAS  Google Scholar 

  • Rangaswamy, V., Reddy, B. R., & Venkateswarlu, K. (1994). Activities of dehydrogenase and protease in soil as influenced by monocrotophos, quinalphos, cypermethrin and fenvalerate. Agriculture Ecosystems & Environment, 47(4), 319–326. doi:10.1016/0167-8809(94)90098-1.

    Article  CAS  Google Scholar 

  • Robson, H., & Gijnner, H. B. (1970). Differential response of soil microflora to diazinon. Plant and Soil, 33, 613–621. doi:10.1007/BF01378250.

    Article  CAS  Google Scholar 

  • Salonius, P. O. (1972). Effect of DDT and fenitrothion on forest-soil microflora. Journal of Economic Entomology, 65, 1089–1090.

    CAS  Google Scholar 

  • Sardar, D., & Kole, R. K. (2005). Metabolism of chlorpyrifos in relation to its effect on the availability of some plant nutrients in soil. Chemosphere, 61, 1273–1280. doi:10.1016/j.chemosphere.2005.03.078.

    Article  CAS  Google Scholar 

  • Schnurer, J., & Rosswall, T. (1982). Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology, 43, 1256–1261.

    CAS  Google Scholar 

  • Sivasithamparam, K. (1969). Some effects of an insecticide (Dursban) and a weedicide (Linuron) on the microflora of a submerged soil. Ceylon Association for Advancement in Science, 25, 1–8.

    Google Scholar 

  • Sivasithamparam, K. (1970). Some effects of an insecticide (Dursban) and a weedkiller (Linuron) on the microflora of a submerged soil. Riso, 19, 339–346.

    Google Scholar 

  • Sommerville, L. (1987). Perspective on side effect testing. In L. Sommerville, & M. P. Greaves (Eds.), Pesticide effects in soil microflora (pp. 5–13). London: Taylor and Francis.

    Google Scholar 

  • Sylvestre, G. S., & Fournier, J. C. (1979). Effect of pesticides on the soil microflora. In N. C. Brady (Ed.), Advances in agronomy (Vol. 31, pp. 1–81). USA: Academic.

    Google Scholar 

  • Tu, C. M. (1970). Effect of four organophosphorus insecticides on microbial activities in soil. Applied Microbiology, 19, 479–484.

    CAS  Google Scholar 

  • Tu, C. M. (1972). Effect of four nematocides on activities of microorganisms in soil. Applied Microbiology, 23, 398–401.

    CAS  Google Scholar 

  • Van De Warf, H., & Verstraete, W. (1987a). Estimation of active soil microbial biomass by mathematical analysis of respiration curves: Development and verification of the model. Soil Biology & Biochemistry, 19, 253–260. doi:10.1016/0038-0717(87)90006-X.

    Article  Google Scholar 

  • Van De Warf, H., & Verstraete, W. (1987b). Estimation of active soil microbial biomass by mathematical analysis of respiration curves: Calibration of the test procedure. Soil Biology & Biochemistry, 19, 261–265. doi:10.1016/0038-0717(87)90007-1.

    Article  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703–707. doi:10.1016/0038-0717(87)90052-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramen K. Kole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, M., Sardar, D., Pal, R. et al. Effect of chlorpyrifos on microbial biomass and activities in tropical clay loam soil. Environ Monit Assess 160, 385–391 (2010). https://doi.org/10.1007/s10661-008-0702-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0702-y

Keywords

Navigation