Skip to main content

Advertisement

Log in

Review of monitoring and assessing ground vegetation biodiversity in national forest inventories

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Ground vegetation (GV) is an important component from which many forest biodiversity indicators can be estimated. To formulate policies at European level, taking into account biodiversity, European National Forest Inventories (NFIs) are one of the most important sources of forest information. However, for monitoring GV, there are several definitions, data collection methods, and different possible indicators. Even though it must be considered that natural conditions in different countries form very different understory types, each one has its own cost-efficient monitoring design, and they can hardly be compared. Therefore, the development of general guidelines is a particularly complex issue. This paper is a review of data collection methods and consequently a selection of the best available methods for the set of indicators with an emphasis on GV sampling methodologies in NFIs. As a final result, recommendations on GV definitions and classifications, sampling methodologies, and indicators are formulated for NFIs. Different sampling areas are recommended for each life form (shrubs, herbs, etc.). Inventory cycles and sampling seasons (depending on the phonological stages) should be specially considered and evaluated in the results. The proposed indicators are based on composition at different levels of sampling intensity for each life form and on coverage measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilo, M., Aramburu, M. P., Blanco, A., Calatayud, T., Carrasco, R., Castilla, G., et al. (1992). Guía para la elaboración de estudios del medio físico: Contenido y metodología (809 pp.). Madrid: Ministerio de Medio Ambiente.

    Google Scholar 

  • Barbati, A., Corona, P., & Marchetti, M. (2006). European forest types. Categories and types for sustainable forest management and reporting and policy. EEA Technical report No 9/2006.

  • Barkman, J. J. (1989). A critical evaluation of minimum area concepts. Plant Ecology, 85, 89–104.

    Article  Google Scholar 

  • Bergstedt, J., & Milberg, P. (2001). The impact of logging intensity on field-layer vegetation in Swedish boreal forests. Forest Ecology and Management, 154, 105–115.

    Article  Google Scholar 

  • Bocher, T. W. (1933). Phytogeographical studies of the Greenland flora. Meddel on Groenland Bd., 104(3), 55.

    Google Scholar 

  • Bonham, C. D. (1989). Measurements for terrestrial vegetation (338 pp.). New York: Wiley.

    Google Scholar 

  • Brakenhielms, S., & Liu, Q. (1998). Long-term effects of clear-felling on vegetation dynamics and species diversity in a boreal pine forest. Biodiversity and Conservation, 7, 207–220.

    Article  Google Scholar 

  • Braun-Blanquet, J. (1932). Plant sociology: The study of plant communities (439 pp.). New York: McGraw Hill.

    Google Scholar 

  • Brunet, J., Falkengren-Grerup, U., & Tyler, G. (1996). Herb layer vegetation of south Swedish beech and oak forests – effects of management and soil acidity during one decade. Forest Ecology and Management, 88, 259–272.

    Article  Google Scholar 

  • Chytrý, M., & Otýpková, Z. (2003). Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science, 14(4), 563–570.

    Article  Google Scholar 

  • COST E43 (2005). Available at http://www.metla.fi/eu/cost/e43/.

  • Dan Aamlid and the col. Expert Panel (2002). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Part VIII. Assessment of ground Vegetation. Available at http://www.icp-forests.org/pdf/manual8.pdf.

  • Danserau, P. (1957). Biogeography an ecological perspective (xiii + 394 pp.). New York: Ronald.

    Google Scholar 

  • Daubenmire, R. F. (1968). Plant communities: A text book of plant synecology (xiv + 300 pp.). New York: Harper and Row.

    Google Scholar 

  • Delbaere, B. (2003). An inventory of biodiversity indicators in Europe, 2002 (42 pp.). Technical Report No 92. Copenhagen: European Enviromen Agency.

    Google Scholar 

  • Dierschke, H. (1994). Pflanzensoziologie. Grundlagen und methoden (683 pp.). Stuttgart: Ulmer.

    Google Scholar 

  • Dulamsuren, C. h., Hauck, M., & Mühlenberg, M. (2005). Ground vegetation in the Mongolian taiga forest-steppe ecotone does not offer evidence for the human origin of grasslands. Applied Vegetation Science, 8(2), 149–154.

    Article  Google Scholar 

  • Ellenberg, H., & Mueller-Dombois, D. (1967a). A key to Raunkiaer plant life forms with revised subdivisions. Bericht über das Geobotanische Forschungsinstitut Rübel in Zürich, 37, 56–73.

    Google Scholar 

  • Ellenberg, H., & Mueller-Dombois, D. (1967b). Tentative physiognomic-ecological classification of plant formations of the Earth. Bericht über das Geobotanische Forschungsinstitut Rübel in Zürich, 37, 21–55.

    Google Scholar 

  • Evans, L. S., Harnett, J., Sr., & Kahn-Jetter, Z. (2006). Procedures to determine the amount of plant cover/basal area in field plots. Environmental and Experimental Botany, 58, 180–187.

    Article  Google Scholar 

  • Eyre, T. J., Kelly, A. L., & Nelder, V. J. (2006). Methodology for the establishment and survey of reference sites for BioCondition. Available at http://www.epa.qld.gov.au/publications/p01993aa.pdf/Methodology_for_the_establishment_and_survey_of_reference_sites_for_BioCondition_version_14.pdf.

  • Ferris, R., & Humphrey, J. W. (1999). A review of potential biodiversity indicators for application in British forests. Forestry, 72(4), 313–328.

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2005). Global forest resources assessment update. Terms and definitions (Final version). Working paper 83. Rome 2004. Available at http://www.fao.org/docrep/007/ae156e/AE156E00HTM.

  • Ford, E. D., & Newbould, P. J. (1977). The biomass and production of ground vegetation and its relation to tree cover through a deciduous woodland cycle. Journal of Ecology, 65, 201–212.

    Article  Google Scholar 

  • Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53, 7–26.

    Article  Google Scholar 

  • Glenn-Lewin, D. C., Peet, R. K., & Veblen, T. T. (Eds.) (1992). Plant succession: Theory and prediction (372 pp.). London, UK: Chapman and Hall.

    Google Scholar 

  • Godron, M., Daget, P., Long, G., Sauvage, C. H., Emberger, L., Le Flock, E., et al. (1968). Code pour le relevé méthodique de la végétation et du milieu (296 pp.). Montpellier CNRS Paris: Centre c’études phytosociologiques et écologiques.

    Google Scholar 

  • Gould, W. (2000). Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Applications, 10(6), 1861–1870.

    Article  Google Scholar 

  • Goulden, M. L., & Crill, P. M. (1997). Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiology, 17, 537–542.

    CAS  Google Scholar 

  • Gounot, B. (1969). Méthodes d‘étude quantitative de la végétation (314 pp.). Paris: Masson et Cie.

    Google Scholar 

  • Granke, O. (2006). Assessment of Ground Vegetation. ForestBIOTA work report. Available at http://www.forestbiota.org/docs/report_GV.pdf.

  • Groombridge, B., & Jenkins, M. D. (Eds.) (1996). Assessing biodiversity status and sustainability. WCMC Biodiversity Series 5 (114 pp.). Cambridge: World Conservation.

    Google Scholar 

  • Gurevitch, J., & Chester, S. T. (1986). Analysis of repeated measures experiments. Ecology, 67(1), 251–255.

    Article  Google Scholar 

  • Hanson, H. C. (1934). A comparison of methods of botanical analysis of the native prairie in western North Dakota. Journal of Agricultural Research, 49, 815–842.

    Google Scholar 

  • Hanson, H. C., & Love, L. D. (1930). Size of list quadrat for use in determining effects of different systems of grazing upon Agropyron smithii mixed prairie. Journal of Agricultural Research, 41, 549–560.

    Google Scholar 

  • Hill, M. O., & Carey, P. D. (1997). Prediction of yield in the Rothamsted Park Grass Experiment by Ellenberg indicator values. Journal of Vegetation Science, 8, 579–586.

    Article  Google Scholar 

  • Hill, M. O., & Gauch, H. G. (1980). Detrended correspondence analysis: An improved ordination technique. Vegetatio, 42, 47–58.

    Article  Google Scholar 

  • Hokkanen, P. (2006). Environmental patterns and gradients in the vascular plants and bryophytes of eastern Fennoscandian herb-rich forest. Forest Ecology and Management, 229, 73–87.

    Article  Google Scholar 

  • Holopainen, M., & Guangxing, W. (1998). Digitized aerial photographs for assessing forest biodiversity. In P. Bachmann, M. Köhl, & R. Päivinen (Eds.), Assessment of biodiversity for improved forest planning. Forestry sciences (Vol. 51, pp. 249–254). Dordrecht: Kluwer.

    Google Scholar 

  • Hotanen, J. P., & Vasander, H. (1992). Post-drainage development of vegetation in southern Finnish peatlands studied by numerical analysis. Suo – Mires and Peat, 43(1), 1–10.

    Google Scholar 

  • Hubbard, W., Latt, C., & Long, A. (1998). Forest terminology for multiple-use management. SS-FOR-11. University of Florida, Cooperative of Extension Service, Institute of Food and Agricultural Sciences.

  • Jansen, A., Robertson, A., Thompson, L., & Wilson, A. (2004). Development and application of a method for the rapid appraisal of riparian condition. River and Riparian Land Management Technical Guideline. No. 4. Canberra: Land & Water.

    Google Scholar 

  • Jeffers, J. N. R. (1996). Measurement and characterisation of biodiversity in forest ecosystems new methods and models. In P. Bachman, K. Kuusela, & J. Uuttera (Eds.), Assessment of biodiversity for improved forest management. European Forest Institute proceedings No. 6 (pp. 59–67). Joensuu: European Forest Institute.

    Google Scholar 

  • Johnson, S. E., Mudrak, E. L., & Waller, D. M. (2006). A comparison of sampling methodologies for long-term forest vegetation monitoring in the Great Lakes Network National Parks. Great Lakes Inventory and Monitoring Network, Ashland, WI. Technical Report: GLKN/2006/03. 140 pp. Available at http://science.nature.nps.gov/im/units/GLKN/Veg%20Plot%20Comparison.pdf.

  • Kolari, P., Pumpanen, J., Kulmala, L., Ilvesniemi, H., Nikinmaa, E., Grönholm, T., et al. (2006). Forest floor vegetation plays an important role in photosynthetic production of boreal forests. Forest Ecology and Management, 221, 241–258.

    Google Scholar 

  • Küchler, A. W. (1967). Vegetation mapping (472 pp.). New York: Ronald.

    Google Scholar 

  • Kühlmann, S., Heikkinen, J., Särkkä, S., & Hjorth, U. (2001). Relating abundance of ground vegetation species and tree patterns at local scale using ecological field theory. In K. Rennolls (Ed.), Proceedings of IUFRO 4.11 conference: Forest biometry, modelling and information science.

  • Kupferschmid, A. D., & Bugmann, H. (2005). Predicting decay and ground vegetation development in Picea abies snag stands. Plant Ecology, 179, 247–268.

    Article  Google Scholar 

  • Kuuluvainen, T., & Pukkala, T. (1989). Effect of Scots pine seed trees on the density of ground vegetation and tree seedlings. Silva Fennica, 23, 159–167.

    Google Scholar 

  • Law, B. E., Baldocchi, D. D., & Anthoni, P. M. (1999). Below-canopy and soil CO2 fluxes in a ponderosa pine forest. Agricultural and Forest Meteorology, 94(3), 171–188.

    Article  Google Scholar 

  • Londo, G. (1975). The decimal scale for releves of permanent quadrats. Vegetatio, 33, 61–64.

    Article  Google Scholar 

  • Madotz, M. (2004). Estudio de los índices de Ellenberg en la vegetación de la región Cantábrica. Ph.D. thesis, EUIT Forestal, Universidad Politécnica de Madrid.

  • Maurer, B. A. (1999). Untangling ecological complexity: The macroscopic perspective. Chicago: University of Chicago Press.

    Google Scholar 

  • Mäkipää, R., & Heikkinen, J. (2003). Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. Journal of Vegetation Science, 14, 497–508.

    Article  Google Scholar 

  • Margalef, R. (1974). Ecologia (951 pp.). Barcelona: Omega.

    Google Scholar 

  • McCormick, N., & Folving, S. (1998). Monitoring European forest biodiversity at regional scales using satellite remote sensing. In P. Bachmann, M. Köhl, & R. Päivinen (Eds.), Assessment of biodiversity for improved forest planning. European Forest Institute, proceedings no. 18 (pp. 283–289).

  • McCune, B., & Mefford, M. J. (1999). PC-ORD multivariate analysis of ecological data version 2.0. Gleneden Beach: MjM software design.

    Google Scholar 

  • McIntosh, R. P. (1985). The background of ecology. Concept and theory (400 pp.). New York: Cambridge University Press.

    Google Scholar 

  • Mueller-Dombois, D., & Ellenberg, H. (1974). Aims and methods of vegetation ecology (547 pp.). New York: Wiley.

    Google Scholar 

  • Newton, A. C., & Kapos, V. (2002). Biodiversity indicators in national forest inventories. Unasylva, 53(210), 56–64.

    Google Scholar 

  • Odenbaugh, J., & de Laplante, K. (2006). What isn’t wrong with ecosystem ecology. In R. A. Skipper, Jr., C. Allen, R. A. Ankeny, C. F. Craver, L. Darden, G. Mikkelson, et al. (Eds.), Philosophy and the life sciences: A reader. MIT Press. Available at http://www.lclark.edu/~jay/What%20Isn’t%20Wrong%20with%20Ecosystem%20Ecology.pdf.

  • Odum, E. P. (1960). Organic production and turnover in old-field succession. Ecology, 41, 34–49.

    Article  Google Scholar 

  • Olsson, B. A., & Staaf, H. (1995). Influence of harvesting intensity of logging residues on ground vegetation in coniferous forests. Journal of Applied Ecology, 32, 640–654.

    Article  Google Scholar 

  • Oosting, H. J. (1956). The study of plant communities: An introduction to plant ecology: An introduction to plant ecology. San Francisco: Freeman.

    Google Scholar 

  • Økland, R. H., Rydgren, K., & Økland, T. (1999). Single tree influence on understorey vegetation in a Norwegian spruce forest. Oikos, 87(3), 488–498.

    Article  Google Scholar 

  • Palmer, M. W. (1993). Assesing ground vegetation biodiversity. Ecology, 74(8), 2215–2230.

    Article  Google Scholar 

  • Pielou, E. C. (1969). An introduction to mathematical ecology (286 pp.). New York: Wiley.

    Google Scholar 

  • Pitcairn, C. E. R., Smart, S. M., Fowler, D., & Sutton, M. A. (2004). Bioindicator methods for nitrogen based on community species composition: Higher plants and bryophytes. In M. A. Sutton, C. E. R. Pitcairn, & C. P. Whitfield (Eds.), Bioindicator and biomonitoring methods for assessing the effects of atmospheric nitrogen on statutory nature conservation sites (pp. 65–74). Peterborough: Joint Nature Conservation Committee. Report No. 356.

    Google Scholar 

  • Porté, A., Dulhoste, R., Lopez, S., Bosc, A., Meredieu, C., Teissier du Cros, R., et al. (2005). Détermination de la biomasse aérienne du sous-bois de peuplements adultes de Pin maritime: contribution à la quantification des stocks de carbone forestier à l’aide d’indicateurs de couvert. In VIIIème colloque ARBORA, “CARBONE, FORET, BOIS: Impacts du changement climatique, stratégies pour la filière”, ISTAB, Bordeaux (pp. 97–107), 1–2 Décembre 2005.

  • Poso, S., Waite, M. L., & Koivuniemi, J. (1995). Assessment of non-timber functions: Remote sensing technologies. The Monte Verità Conference on Forest Survey designs. “Simplicity versus efficiency” and assessment of non-timber resources (pp. 239–245). Birmensdorf: Swiss Federal Institute for Forest, Snow and Landscape Research.

    Google Scholar 

  • Qi, J., Marsett, R. C., Moran, M. S., Goodrich, D. C., Heilman, P., Kerr, Y. H., et al. (2000). Spatial and temporal dynamics of vegetation in the San Pedro River basin area. Agricultural and Forest Meteorology, 105, 55–68.

    Article  Google Scholar 

  • Raunkiaer, C. (1934). The life forms of plants and statistical plant geography (632 pp.). Oxford: Clarendon.

    Google Scholar 

  • Roberts-Pichette, P., & Gillespie, L. (1999). Terrestrial vegetation biodiversity monitoring protocols. EMAN Occasional Paper Series, Report No. 9. Burlington: Ecological Monitoring Coordinating Office.

    Google Scholar 

  • Rondeux, J. (1999). Forest inventories and biodiversity. Available at http://www.fao.org/docrep/x0963e/x0963e09.htm.

  • Rowe, E. C., Moldan, F., Emmett, B. A., Evans, C., & Hellsten, S. (2005). Model chains for assessing the impacts of nitrogen on soils, waters and biodiversity: A review. Contract Report Project No C02887 for DEFRA (UK) Project No. CPEA 19 (62 pp.). Available at http://critloads.ceh.ac.uk/reports/Dynamic%20Modelling%20reports/N%20impacts%20model%20chains%20review%20final%20version.pdf.

  • Saetre, P. (1999). Spatial patterns of ground vegetation, soil microbial biomass and activity in a mixed spruce-birch stand. Ecography, 22, 183–192.

    Article  Google Scholar 

  • Schaffers, A. P. (2002). Soil, biomass, and management of semi-natural vegetation—Part I. Interrelationships. Plant Ecology, 158, 229–246.

    Article  Google Scholar 

  • Schmidt, H. J. (1986). Proc. Conf. GR 11 Stockholm (p. 117), and Thesis B. Academy of Sciences Berlin, GDR.

  • Schuck, A., Parviainen, J., & Bücking, W. (1994). A review of approaches to forestry research on structure, succession and biodiversity of undisturbed and semi-natural forests and woodlands in Europe. Working paper 3 (62 pp.). European Forest Institute.

  • Schulze, E. D., & Mooney, H. A. (1993). Ecosystem function of biodiversity: A summary. In E. D. Schulze & H. A. Mooney (Eds.), Biodiversity and ecosystem function (pp. 497–510). Berlin: Springer.

    Google Scholar 

  • Scott, G. A. M. (1970). Vegetation studies on Secretary Island, Fiordland. New Zealand Journal of Botany, 8, 30–50.

    Google Scholar 

  • Shimwell, D. W. (1971). The description and classification of vegetation (322 pp.). Seattle: University of Washington Press.

    Google Scholar 

  • Silva, T. P., Cardoso Pereira, J. M., Paúl, J. C. P., Santos, M. T. N., & Vasconcelos, J. P. (2006). Estimativa de emissões atmosféricas originadas por fogos rurais em Portugal. Silva Lusitanica, 14(2), 239–263.

    Google Scholar 

  • Smith, G., Gittings, T., Wilson, M., French, L., Oxbrough, A., O’Donoghue1, S., et al. (2005). BIOFOREST. Assessment of biodiversity at different stages of the forest cycle. Final report, February 2005. Available at http://www.epa.ie/downloads/pubs/research/biodiversity/bioforestfinalreport/312%20report%20text%20final.pdf.

  • Somogyi, Z., Cienciala, E., Mäkipää, R., Muukkonen, P., Lehtonen, A., & Weiss, P. (2006). Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126(2), 197–207.

    Article  Google Scholar 

  • Stohlgren, T. J. (1994). Planning long-term vegetation studies at landscape scales. In J. H. Steele & T. M. Powell (Eds.), Ecological time series (pp. 209–241). New York: Chapman & Hall.

    Google Scholar 

  • Tansley, A. G., & Chipp, T. F. (Eds.) (1926). Aims and methods in the study of vegetation. London: The British Empire vegetation Committee.

    Google Scholar 

  • ter Braak, C. J. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J., & Smilauer, P. (1998). CANOCO reference manual and user’s guide to Canoco for windows. Software for canonical community ordination (version 4) (351 pp.). Ithaca: Microcomputer Power.

    Google Scholar 

  • Terradas, J., Salvador, R., Vayreda, J., & Lloret, F. (2004). Maximal species richness: An empirical approach for evaluating plant forest biodiversity. Forest Ecology and Management, 189, 241–249.

    Article  Google Scholar 

  • Thimonier, A., Keller, W., & Dupouey, J. L. (2003). Nitrogen and ground vegetation. Available at: http://www.wsl.ch/forschung/forschungsunits/wald/biogeochem/index_EN.

  • UNEP (1992). Convention on biological diversity. United Nations Environment Programme. Nairobi. Kenia (52 pp.). Available at: http://www.biodiv.org/convention/articles.

  • Vanclay, J. K. (1998). Towards more rigorous assessment of biodiversity. In P. Bachmann, M. Köhl, & R. Päivinen (Eds.), Assessment of biodiversity for improved forest planning, proceedings no. 18 (pp. 211–232). European Forest Institute.

  • Van Dobben, H. F. (1993). Vegetation as a monitor for deposition of nitrogen and acidity. Ph.D. thesis, Agricultural University of Wageningen, NL.

  • Walker, L. R. (2005). Margalef y la sucesión ecológica. Ecosistemas, 14(1), 66–78.

    Google Scholar 

  • Wamelink, G. W. W., Goedhart, P. W., Van Dobben, H. F., & Berendse, F. (2005). Plant species as indicators of soil pH: Replacing expert judgement with measurements. Journal of Vegetation Science, 16(4), 461–470.

    Article  Google Scholar 

  • Wamelink, G. W. W., Joosten, V., Van Dobben, H. F., & Berendse, F. (2002). Validity of Ellenberg indicator values judged from physicochemical field measurements. Journal of Vegetation Science, 13, 269–278.

    Article  Google Scholar 

  • Wartenberg, D., Ferson, S., & Rohlf, F. J. (1987). Putting things in order: A critique of detrended correspondence analysis. The American Naturalist, 129(3), 434–448.

    Article  Google Scholar 

  • Wilson, S. M., Pyatt, D. G., Malcolm, D. C., & Connolly, T. (2001). The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests. Forest Ecology and Management, 140(2, 3), 101–116.

    Article  Google Scholar 

  • Zavitkovski, J. (1976). Ground vegetation biomass, production, and efficiency of energy utilization in some northern Wisconsin forest ecosystems. Ecology, 57(4), 694–706.

    Article  Google Scholar 

  • Zenner, E. K., Kabrick, J. M., Jensen, R. G., Peck, J. E., & Grabner, J. K. (2006). Responses of ground flora to a gradient of harvest intensity in the Missouri Ozarks. Forest Ecology and Management, 222, 326–334.

    Article  Google Scholar 

  • Zobel, R. W. (1998). Statistical analysis of a yield trial. Agronomy Journal, 80, 388–393.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Alberdi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberdi, I., Condés, S. & Martínez-Millán, J. Review of monitoring and assessing ground vegetation biodiversity in national forest inventories. Environ Monit Assess 164, 649–676 (2010). https://doi.org/10.1007/s10661-009-0919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0919-4

Keywords

Navigation