Skip to main content

Advertisement

Log in

Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This research is focused on the coastline evolution monitoring and its potential change estimation by remote sensing techniques using multi-temporal Landsat images at the southeast coasts of the Mediterranean Sea in Turkey. The study area includes the coastal zone located in the Cukurova Delta coasts. The Cukurova Delta has accreted toward the Mediterranean Sea as a result of sediment discharge and transport from Seyhan and Ceyhan rivers. These processes have caused the morphological changes (accretion or erosion) of coastline along some parts of the southeast coasts of the Mediterranean Sea. In this study, coastline changes were researched by using radiometrically and geometrically corrected multi-temporal and multi-spectral data from Landsat Multispectral Scanner dated 1972, Thematic Mapper dated 1987, and Enhanced Thematic Mapper dated 2002. In the image processing steps, mosaicing, subset, Iterative Self-Organizing Data Analysis Technique classification, band ratioing (B5/B2), edge detection, and overlay techniques were used to carry out coastline extraction and the Digital Shoreline Analysis System was used to calculate rate of coastline changes. As a result of the analysis, in some parts of the research area, remarkable coastline changes (more than 2,900 m withdrawal and − 24.50 m/year erosion) were observed for a 30–year period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alphan, H. (2005). Perceptions of coastline changes in river deltas: southeast Mediterranean coast of Turkey. International Journal Environment and Pollution, 23(1), 92–102.

    Article  CAS  Google Scholar 

  • Bayram, B., Acar, U., Seker, D., & Ari, A. (2008). A novel algorithm for coastline fitting through a case study over the Bosphorus. Journal of Coastal Research, 24(4), 983–991.

    Article  Google Scholar 

  • Braud, D. H., & Feng, W. (1998). Semi-automated construction of the Louisiana coastline digital land/water boundary using Landsat Thematic Mapper satellite imagery. Department of Geography and Anthropology, Louisiana State University, Louisiana Applied Oil Spill Research and Development Program, OSRAPD Tech. Rep. Ser. 97-002.

  • Chen, X. (2002). Using remote sensing and GIS to analyse land cover change and its impacts on regional sustainable development. International Journal of Remote Sensing, 23(1), 107–124.

    Article  CAS  Google Scholar 

  • Ciavola, P., Mantovani, F., Simeoni, U., & Tessari, U. (1999). Relation between river dynamics and coastal changes in Albania: an assessment integrating satellite imagery with historical data. International Journal of Remote Sensing, 20(3), 561–584.

    Article  Google Scholar 

  • Coastal Engineering Manual (2002). US Army Corps of Engineers. Available on-line at: http://www.ce.ufl.edu/~sheppard/eoc6430/Coastal_Engineering_Manual.htm [accessed 3.064.09]

  • Constanza, R., d’Agre, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.

    Article  Google Scholar 

  • Cracknell, A. P. (1999). Remote sensing techniques in estuaries and coastal zone—an update. International Journal of Remote Sensing, 19(3), 485–496.

    Article  Google Scholar 

  • Crowell, M., & Leatherman, S. P. (1999). Coastal erosion mapping and management. Journal of Coastal Research, 28, 1–196. Special Issue.

    Google Scholar 

  • Ekercin, S. (2007). Coastline change assessment at the Aegean sea coasts in Turkey using multitemporal Landsat imagery. Journal of Coastal Research, 23(3), 691–698.

    Article  Google Scholar 

  • Eurosion (2004). Living with coastal erosion in Europe: sediment and space for sustainability. Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Frazier, P. S., & Page, K. J. (2000). Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing, 66(2), 1461–1467.

    Google Scholar 

  • Frihy Kh, O. E., Dewidar, M., Nasr, S. M., & El Raey, M. M. (1998). Change detection of the northeastern Nile Delta of Egypt: shoreline changes, Spit evolution, margin changes of Manzala lagoon and its islands. International Journal of Remote Sensing, 19(10), 1901–1912.

    Article  Google Scholar 

  • Ghanavati, E., Firouzabadi, P. Z., Jangi, A. A., & Khosravi, S. (2008). Monitoring geomorphologic changes using Landsat TM and ETM+ data in the Hendijan River delta, southwest Iran. International Journal of Remote Sensing, 29(4), 945–959.

    Article  Google Scholar 

  • Guariglia, A., Buonamassa, A., Losurdo, A., Saladino, R., Trivigno, M. T., Zaccagnino, A., et al. (2006). A multisource approach for coastline mapping and identification of shoreline changes. Annals of Geophysics, 49(1).

  • Howarth, P. J., & Wickware, G. M. (1981). Procedures for change detection using Landsat digital data. International Journal of Remote Sensing, 2(3), 277–291.

    Article  Google Scholar 

  • Inzana, J., Kusky, T., Higgs, G., & Tucker, R. (2003). Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences, 37, 59–72.

    Article  CAS  Google Scholar 

  • Kasparek, M., & Baran, I. (1989). Marine Turtles Turkey: status survey 1988 and recommendations for conservation and management (pp. 128). Heidelberg: WWF.

    Google Scholar 

  • Kasparek, M., & Kinzelbach, R. (1991). Distribution and bionomics of the Nile soft-shelled turtle, Trionyx tringuis, in the Eastern Mediterranean. Zeitschrift für Angewandte Zoologie, 78, 139–159.

    Google Scholar 

  • Kenea, N. H. (1997). Digital enhancement of Landsat data, spectral analysis and GIS data integration for geological studies of the Derudeb area, Southern Red Sea hills, NE Sudan. Berliner Geowissenschaftliche Abhandlungen (D), 14, 111–116.

    Google Scholar 

  • Kevin, W., & El Asmar, H. M. (1999). Monitoring changing position of coastlines using thematic mapper imagery, an example from the Nile Delta. Geomorphology, 29, 93–105.

    Article  Google Scholar 

  • Kiage, L. M., Liu, K. B., Walker, N. D., Lam, N., & Huh, O. K. (2007). Recent land-cover/use change associated with land degradation in the Lake Baringo catchment, Kenya, East Africa: evidence from Landsat TM and ETM+. International Journal of Remote Sensing, 28(19), 4285–4309.

    Article  Google Scholar 

  • Kingsford, R. T., Thomas, R. F., & Wong, P. S. (1997). GIS database for wetlands of the Murray Darling basin (p. 85). Sydney, Australia: Final Report to the Murray–Darling Basin Commission, National Parks and Wildlife Service.

    Google Scholar 

  • Kuleli, T. (2005). Change detection and assessment using multi temporal satellite image for North-East Mediterranean Coast. GIS Development Weekly, 1(5).

  • Kwarteng, A. Y., & Chavez, P. S. Jr. (1998). Change detection study of Kuwait City and environs using multi-temporal Landsat Thematic Mapper data. International Journal of Remote Sensing, 19(9), 1651–1662.

    Article  Google Scholar 

  • Liu, H., & Jezek, K. C. (2004). Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. International Journal of Remote Sensing, 25(5), 937–958.

    Article  Google Scholar 

  • Mas, J. F. (1999). Monitoring land-cover changes: a comparison of change detection techniques. International Journal of Remote Sensing, 20, 139–152.

    Article  Google Scholar 

  • Mouat, D. A., & Lancaster, J. (1996). Use of remote sensing and GIS to identify vegetation change in the Upper San Pedro River watershed, Arizona. Geocarto International, 11(2), 55–67.

    Article  Google Scholar 

  • Muttitanon, W., & Tripathi, N. K. (2005). Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. International Journal of Remote Sensing, 26(11), 2311–2323.

    Article  Google Scholar 

  • Park, S. K., & Schowengerdt, R. A. (1982). Image reconstruction by parametric cubic convolution. Computer Vision, Graphics and Image Processing, 23, 258–272.

    Article  Google Scholar 

  • Reid, R. S., Kruska, R. L., Muthui, N., Taye, A., Wotton, S., & Wilson, C. J. (2000). Land-use and land-cover dynamics in response to changes in climatic, biological and sociopolitical forces: the case of southwestern Ethiopia. Landscape Ecology, 15, 339–355.

    Article  Google Scholar 

  • Ryu, J., Won, J., & Min, K. D. (2002). Waterline extraction from Landsat TM data in a tidal flat. A case study in Gomso bay, Korea. Technical Report Series Department of Geography & Anthropology Louisiana State University, (83), 442–456.

  • Sawaya, K. E., Olmanson, L. G., Heinert, N. J., Patrick, L., Brezonik, P. L., Marvin, E., et al. (2003). Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sensing of Environment, 88, 144–156.

    Article  Google Scholar 

  • Segal, D. B. (1983). Use of Landsat multispectral scanner data for definition of limonitic exposures in heavily vegetated areas. Economic Geology, 78, 711–722.

    Article  Google Scholar 

  • Sesli, F. A., Karslı, F., Colkesen, I., & Akyol, N. (2008). Monitoring the changing position of coastlines using aerial and satellite image data: an example from the eastern coast of Trabzon, Turkey. Environmental Monitoring and Assessment, doi:10.1007/s10661-008-0366-7.

    Google Scholar 

  • Shaghude, Y. W., Wannäs, K. O., & Lundén, B. (2003). Assessment of shoreline changes in the western side of Zanzibar channel using satellite remote sensing. International Journal of Remote Sensing, 24(23), 4953–4967.

    Article  Google Scholar 

  • Shilen, S. (1979). Geometric correction, registration and resampling of Landsat imagery. Canadian Journal of Remote Sensing, 5(19), 75–89.

    Google Scholar 

  • Siddiqui, M. N., & Maajid, S. (2004). Monitoring of geomorphological changes for planning reclamation work in coastal area of Karachi, Pakistan. Advances in Space Research, 33, 1200–1205.

    Article  Google Scholar 

  • Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Miller, T. L. (2005). Digital Shoreline Analysis System (DSAS) version 3.0: an ArcGIS extension for calculating shoreline change. US Geol Surv Open-File Rep, 2005-1304.

  • Tucker, J. C., Grant, D. M., & Dykstra, J. D. (2004). NASA’s global orthorectified Landsat data set. Photogrammetric Engineering and Remote Sensing, 70(3), 313–322.

    Google Scholar 

  • Uslu, T., Salman, A. H. P. M., & Doody, J. P. (1993). Conservation aspects of coastal dunes in Turkey. Leiden: EUCC Internal report series no.5, EUCC.

    Google Scholar 

  • Van der Have, T. M., Van Den Berk, V. M., Cronau, J. P., & Langeveld, M. J. (1988). South Turkey project: a survey of waders and waterfowls in the Çukurova Deltas. Dutch Society for the Protection of Birds, Holland: WIWO Report No. 22.

  • Vanderstraete, T., Goossens, R., & Ghabour, T. K. (2006). The use of multi-temporal Landsat images for the change detection of the coastal zone near Hurghada, Egypt. International Journal of Remote Sensing, 27(17), 3645–3655.

    Article  Google Scholar 

  • Weng, Q. (2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS, and stochastic modeling. Journal of Environmental Management, 64, 273–284.

    Article  Google Scholar 

  • Wu, W. (2007). Coastline evolution monitoring and estimation—a case study in the region of Nouakchott, Mauritania. International Journal of Remote Sensing, 28(24), 5461–5484.

    Article  Google Scholar 

  • Yang, X., Damen, M. C. J., & Van Zuidam, R. A. (1999). Use of thematic mapper imagery with a geographic information system for geomorphologic mapping in a large deltaic lowland environment. International Journal of Remote Sensing, 20(4), 659–681.

    Article  Google Scholar 

  • Yuksel, A. E., Akay, A. E., & Gundogan, R. (2008). Using ASTER imagery in land use/cover classification of eastern Mediterranean landscapes according to CORINE land cover project. Sensors, 8, 1237–1251.

    Article  Google Scholar 

  • Zhang, J., Wang, Y., & Wang, Z. (2007). Change analysis of land surface temperature based on robust statistics in the estuarine area of Pearl River (China) from 1990 to 2000 by Landsat TM/ETM+ data. International Journal of Remote Sensing, 28(10), 2383–2390.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuncay Kuleli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuleli, T. Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey. Environ Monit Assess 167, 387–397 (2010). https://doi.org/10.1007/s10661-009-1057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1057-8

Keywords

Navigation