Skip to main content
Log in

Assessment of the variability in response of radish and brinjal at biochemical and physiological levels under similar ozone exposure conditions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present investigation was done to evaluate the effects of ambient air pollutants on physiological and biochemical characteristics of radish (Raphnus sativa L. var. Pusa Reshmi) and brinjal (Solanum melongena L. var. Pusa hybrid-6) plants grown in open-top chambers with filtered (FCs) and non-filtered (NFCs) treatments at a suburban site in Varanasi, India. Eight hourly mean concentrations of 11.8, 20.8, and 40.8 ppb for SO2, NO2, and O3, respectively, were recorded. O3 was the most significant pollutant affecting the plant performance. Photosynthetic rate and stomatal conductance declined in both the test plants in NFCs as compared to FCs. Lipid peroxidation was higher in NFCs, but the increase was more in radish compared to brinjal. The constitutive levels of the antioxidants as well as their increments upon O3 exposure were of higher magnitude in brinjal as compared to radish. Reduction in Fv/Fm ratio of the plants in NFCs was a regulatory mechanism to cope with the inefficiency of Calvin cycle. The data indicate that O3 triggered the protective mechanisms in plants which resulted in increments in enzymatic and non-enzymatic antioxidants of O3-exposed plants. The variability of the magnitude of responses in radish and brinjal due to O3 stress suggests that radish is more susceptible to ambient O3 injury compared to brinjal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, M., Singh, B., Rajput, M., Marshall, F., & Bell, J. N. B. (2003). Effect of air pollution on peri-urban agriculture: A case study. Environmental Pollution, 126, 323–329.

    Article  CAS  Google Scholar 

  • Ashmore, M. R. (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell and Environment, 28, 949–964.

    Article  CAS  Google Scholar 

  • Bell, J. N. B., & Ashmore, M. R. (1986). Design and construction of open top chambers and methods of filtration (equipment and cost). In Proceedings of II European open top chambers workshop. Brussels: Freiburg, CEC.

    Google Scholar 

  • Bray, H. G., & Thorpe, W. Y. (1954). Analysis of phenolic compounds of interest in metabolism. In D. Click (Ed.), Methods of biochemical analysis (pp. 27–52). New York: Interscience.

    Chapter  Google Scholar 

  • Britton, C., & Mehley, A. C. (1955). Assay of catalase and peroxidase. In S. P. Colowick, & N. O. Kalpan (Eds.), Methods in enzymology (p. 764). New York: Academic.

    Google Scholar 

  • Burkey, K. O., Eason, G., & Fiscus, E. L. (2003). Factors that affect leaf extracellular ascorbic acid content and redox status. Physiologia Plantarum, 117, 51–57.

    Article  CAS  Google Scholar 

  • Calatayud, A., Ramirez, J. W., Iglesias, D. J., & Barreno, E. (2002). Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant system in lettuce leaves. Physiologia Plantarum, 116, 308–316.

    Article  CAS  Google Scholar 

  • Carlsson, A. S., Wallin, G., & Sandelius, A. S. (1996). Species and age dependant sensitivity to ozone in young plants of pea, wheat and spinach: Effects on acyl lipid and pigment content and metabolism. Physiologia Plantarum, 98, 271–280.

    Article  CAS  Google Scholar 

  • Castagna, A., Nali, C., Ciompi, S., Lorenzini, G., Soldatini, G. F., & Ranieri, A. (2001). Ozone exposure effects photosynthesis of pumpkin (Cucurbita pepo) plants. New Phytologist, 152, 223–229.

    Article  CAS  Google Scholar 

  • Cerena, M., Bonza, M. C., Harris, R., Sanders, D., & Michelis, M. I. D. (2006). Abscisic acid stimulates the expression of two isoforms of plasma membrane Ca + -ATPase in Arabidopsis thaliana seedlings. Plant Biology, 8, 572–578.

    Article  Google Scholar 

  • Chen, Z., & Gallie, D. R. (2005). Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiology, 138, 1673–1689.

    Article  CAS  Google Scholar 

  • Conklin, P. L., & Barth, C. (2004). Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens and the onset of senescence. Plant Cell and Environment, 27, 959–970.

    Article  CAS  Google Scholar 

  • Crous, K. Y., Vandermeiren, K., & Ceulemans, R. (2006). Physiological responses to cumulative ozone uptake in two white clover (Trifoliun repens L. cv. Regal) clones with different ozone sensitivity. Environmental and Experimental Botany, 58, 169–179.

    Article  CAS  Google Scholar 

  • Degl’Innocenti, E., Guidi, L., & Soldatini, G. F. (2002). Characterization of the photosynthetic response of tobacco leaves to ozone: CO2 assimilation and chlorophyll fluorescence. Journal of Plant Physiology, 159, 845–853.

    Article  Google Scholar 

  • Duxbury, A. C., & Yentsch, C. S. (1956). Plankton pigment monographs. Journal of Marine Research, 15, 91–101.

    Google Scholar 

  • Emberson, L. D., Buker, P., Ashmore, M. R., Mills, G., Jackson, L. S., Agrawal, M., et al. (2009). A comparison of North American and Asian exposure-response data for ozone effects on crop yields. Atmospheric Environment, 43, 1945–1953.

    Article  CAS  Google Scholar 

  • Evans, N. H., McAnish, M. R., Hetherington, A. M., & Knight, M. R. (2005). ROS perception in Arabidopsis thaliana: The ozone induced calcium response. The Plant Journal, 41, 615–626.

    Article  CAS  Google Scholar 

  • Flowers, M. D., Fiscus, E. L., Burkey, K. O., Booker, F. L., & Dubois , B. (2007). Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environmental and Experimental Botany, 61, 190–198.

    Article  CAS  Google Scholar 

  • Francini, A., Nali, C., Picchi, G., & Lorenzini, G. (2007). Metabolic changes in white clover clones to ozone. Environmental and Experimental Botany, 60, 11–19.

    Article  CAS  Google Scholar 

  • Glick, R. E., Schlagnhaufer, C. D., Arteca, R. N., & Pell, J. E. (1995). Ozone induced ethylene emission accelerates the loss of ribulose 1,5 bisphosphate carboxylase/oxygenase and nuclear encoded mRNAs in screening potato leaves. Plant Physiology, 109, 891–897.

    CAS  Google Scholar 

  • Guidi, L., & Degl’Innocenti, E. (2008). Ozone effects on high light induced photoinhibition in Phaseolus vulgaris. Plant Science, 174, 590–596.

    Article  CAS  Google Scholar 

  • Guidi, L., Degl’Innocenti, E., & Soldatini, G. F. (2002). Assimilation of CO2, enzyme activation and photosynthetic electron transport in bean leaves, as affected by high light and ozone. New Phytologist, 156, 377–388.

    Article  CAS  Google Scholar 

  • Guidi, L., Nali, C., Lorenzini, G., Filppi, F., & Soladatini, G. F. (2001). Effect of chronic ozone fumigation on the photosynthetic process of poplar clones showing different sensitivity. Environmental Pollution, 113, 245–254.

    Article  CAS  Google Scholar 

  • Heath, R. L. (2008). Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environmental Pollution, 155, 453–463.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1960). Photoperoxidation in isolated chloroplasts. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  Google Scholar 

  • Hörtensteiner, S., & Feller, U. (2002). Nitrogen metabolism and remobilization during senescence. Journal of Experimental Botany, 53, 927–937.

    Article  Google Scholar 

  • Keller, T., & Schwager, H. (1977). Air pollution and ascorbic acid. European Journal of Forest Pathology, 7, 338–350.

    Article  CAS  Google Scholar 

  • Klusener, B., Young, J. J., Murata, Y., Allen, G. J., Mori, I. C., Hugouvieux, V., et al. (2002). Convergence of calcium signaling pathways of pathogen elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiology, 130, 2152–2163.

    Article  CAS  Google Scholar 

  • Kollner, B., & Krause, G. H. M. (2003). Effects of two different ozone exposure regimes on chlorophyll and sucrose content of leaves and yield parameters of sugar beet (Beta vulgaris L.) and rape (Brassica napus L.). Water Air and Soil Pollution, 144, 317–332.

    Article  Google Scholar 

  • Kostka-Rick, R., & Manning, W. J. (1993). Radish (Raphnus sativus L.): A model for studying plant responses to air pollutants and other environmental stresses. Environmental Pollution, 82, 107–138.

    Article  CAS  Google Scholar 

  • Long, S. P., & Naidu, S. L. (2002). Effects of oxidants at the biochemical, cell and physiological levels, with particular reference to ozone. In J. N. B. Bell, & M. Treshow (Eds.), Air pollution and plant life (pp. 69–88). New York: Wiley.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the foliar phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Maccarrone, M., Veldink, G. A., Vliegenthart, J. F. G., & Finazzi Agro, A. (1997). Ozone stress modulates amine oxidase and lipoxygenase expression in lentil (Lens culinaris) seedlings. FEBS Letters, 408, 241–244.

    Article  CAS  Google Scholar 

  • Machlachlan, S., & Zalik, S. (1963). Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley. Canadian Journal of Botany, 41, 1053–1062.

    Article  Google Scholar 

  • Matyssek, R., Wieser, G., Nunn, A. J., Kozovits, A. R., Reiter, I. M., Heerdt Werner, H., et al. (2004). Comparison between AOT40 and ozone uptake in forest trees of different species, age and site conditions. Atmospheric Environment, 38, 2271–2281.

    Article  CAS  Google Scholar 

  • Merrymann, E. L., Spicer, C. W., & Levy, A. (1973). Evaluation of arsenite modified Jacobs Hochheiser procedure. Environmental Science and Technology, 7, 1056–1059.

    Article  Google Scholar 

  • Morgan, P. B., Ainsworth, E. A., & Long, S. P. (2003). How does elevated ozone impact soybean? A meta analysis of photosynthesis, growth and yield. Plant Cell and Environment, 26, 1317–1328.

    Article  CAS  Google Scholar 

  • Nussbaum, S., Geissmann, M., Eggenberg, P., Strasser, R. J., & Fuhrer, J. (2001). Ozone sensitivity in herbaceous species as assessed by direct and modulated chlorophyll fluorescence techniques. Journal of Plant Physiology, 158, 757–766.

    Article  CAS  Google Scholar 

  • Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X. et al. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry Physics, 7, 4419–4444.

    Article  CAS  Google Scholar 

  • Pasqualini, S., Della Torre, G., Ferraniti, F., Ederli, L., Piccioni, C., Reale, L., et al. (2002). Salicylic acid modulates ozone induced hypersensitive cell death in tobacco plants. Physiologia Plantarum, 115, 204–212.

    Article  CAS  Google Scholar 

  • Pleijel, H., Almbring Norberg, P., Selldén, G., & Skärby, L. (1999). Tropospheric ozone decreases biomass production in radish plants (Raphnus sativus L.) grown in rural south west Sweden. Environmental Pollution, 106, 143–147.

    Article  CAS  Google Scholar 

  • Pleijel, H., Danielsson, H., Ojanpera, K., De Temmermann, L., Hogy, P., Badiani, M., et al. (2004). Relationships between ozone exposure and yield loss in European wheat and potato—A comparison of concentration and flux based exposure indices. Atmospheric Environment, 38, 2259–2269.

    Article  CAS  Google Scholar 

  • Prather, M., Ehhalt, D., & Dentener, F. (2001). Atmospheric chemistry and greenhouse gases. In J. J. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. an der Linden, X. Dai, et al. (Eds.), Climate change 2001. The scientific basis, contribution to working group I to the third assessment report of the intergovernmental panel on climate change (pp. 239–287). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rai, R., & Agrawal, M. (2008). Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at a rural site in India. Science of the Total Environment, 407, 679–691.

    Article  CAS  Google Scholar 

  • Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2, 152–159.

    Article  Google Scholar 

  • Sarkar, S., Yadav, P., & Bhatnagar, D. (1998). Lipid peroxidative damage on cadmium exposure and alterations in antioxidant system in rat erythrocytes: A study with relation to time. Biometals, 11, 153–157.

    Article  CAS  Google Scholar 

  • Senser, M., Kloos, M., & Lutz, C. (1990). Influence of soil substrate and ozone plus acid mist on pigment content and composition of needles from young Norway spruce trees. Environmental Pollution, 64, 295–312.

    Article  CAS  Google Scholar 

  • Singh, P., Agrawal, M., & Agrawal, S. B. (2009). Evaluation of physiological, growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels. Environmental Pollution, 157, 871–880.

    Article  CAS  Google Scholar 

  • Stadmann, E. R., & Oliver, C. N. (1991). Metal analysed oxidation of protein physiological consequences. Journal of Biological Chemistry, 266, 2005–2008.

    Google Scholar 

  • Takahama, U., & Oniki, T. (1992). Regulation of peroxidase-dependant oxidation of phenolics in the apoplast of spinach leaves by ascorbate. Plant Cell Physiology, 33, 379–387.

    CAS  Google Scholar 

  • Tiwari, S. (2006). Effect of gaseous air pollutants on selected vegetable crops. Thesis submitted to Banaras Hindu University, Varanasi, India.

  • Tiwari, S., Agrawal, M., & Manning, W. J. (2005). Assessing the impacts of ambient ozone on growth and productivity of two cultivars of wheat in India using three rates of applications of ethylenediurea (EDU). Environmental Pollution, 138, 153–160.

    Article  CAS  Google Scholar 

  • Tiwari, S., Agrawal, M., & Marshall, F. (2006). Evaluation of ambient air pollution impact on carrot plants at a suburban site using open top chambers. Environmental Monitoring and Assessment, 119, 1–15.

    Article  Google Scholar 

  • Tiwari, S., Rai, R., & Agrawal, M. (2008). Annual and seasonal variations in tropospheric ozone concentrations around Varanasi. International Journal of Remote Sensing, 29, 4499–4514.

    Article  Google Scholar 

  • Trebst, A., & Depka, B. (1997). Role of carotene in rapid turnover and assembly of photosystem II in Chlamidomonas reinhardtii. FEBS Letters, 400, 359–362.

    Article  CAS  Google Scholar 

  • Wahid, A. (2006a). Productivity losses in barley attributable to ambient atmospheric pollutants in Pakistan. Atmospheric Environment, 40, 5342–5354.

    Article  CAS  Google Scholar 

  • Wahid, A. (2006b). Influence of atmospheric pollutants on agriculture in developing countries: A case study with three new varieties in Pakistan. Science of the Total Environment, 371, 304–313.

    Article  CAS  Google Scholar 

  • Wahid, A., Maggs, R., Shamsi, S. R. A., Bell, J. N. B., & Ashmore, M. R. (1995a). Air pollution and its impacts on wheat yield in Pakistan, Punjab. Environmental Pollution, 88, 147–154.

    Article  CAS  Google Scholar 

  • Wahid, A., Maggs, R., Shamsi, S. R. A., Bell, J. N. B., & Ashmore, M. R. (1995b). Effects of air filtration on rice yield in Pakistan Punjab. Environmental Pollution, 90, 323–329.

    Article  CAS  Google Scholar 

  • Wahid, A., Milne, E., Shamsi, S. R. A., Ashmore, M. R., & Marshall, F. M. (2001). Effects of oxidants on soybean growth and yield in Pakistan, Punjab. Environmental Pollution, 113, 271–280.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhoolika Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, S., Agrawal, M. Assessment of the variability in response of radish and brinjal at biochemical and physiological levels under similar ozone exposure conditions. Environ Monit Assess 175, 443–454 (2011). https://doi.org/10.1007/s10661-010-1542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1542-0

Keywords

Navigation