Skip to main content

Advertisement

Log in

Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Many studies have been recently reported that veterinary antibiotics released into the environment have a detrimental effect on humans such as the occurrence of antibiotic-resistant bacteria. However, only limited information is available regarding to the release of antibiotics in environmental compartments in Korea. Objectives of this study were to evaluate the concentrations of antibiotics in water, sediment, and soil adjacent to a composting facility in Korea and to determine the dilution effects of antibiotics when released into the environment. Seven antibiotics of chlortetracycline, oxytetracycline, tetracycline, sulfamethazine, sulfamethoxazole, sulfathiazole, and tylosin were evaluated by high-performance liquid chromatography–tandem mass spectrometry following pretreatment using solid-phase extraction to clean the samples. Results showed that the highest concentration of each antibiotic in both aqueous and solid samples was detected from a site adjacent to the composting facility. We also found that the studied water, sediment, and soil samples are contaminated by veterinary antibiotics throughout comparison with studies from other countries. However, relatively lower concentrations of each antibiotic were observed from the rice paddy soil located at the bottom of the water stream. Further research is necessary to continuously monitor the antibiotics release into ecosystems, thereby developing an environmental risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aga, D. S., Goldfish, R., & Kulshrestha, P. (2003). Application of ELISA in determining the fate of tetracyclines in land-applied livestock wastes. Analyst, 128, 658–662.

    Article  CAS  Google Scholar 

  • Boxall, A. B. A., Fogg, L., Blackwell, P. A., Kay, P., & Pemberton, E. J. (2002). Review of veterinary medicines in the environment (p. 257). Briston: UK Environment Agency. R&D Technical Report P6-012/8TR.

  • Bradford, S. A., Segal, E., Zheng, W., Wang, Q., & Hutchins, S. R. (2008). Reuse of concentrated animal feeding operation wastewater on agricultural lands. Journal of Environmental Quality, 37, 97–115.

    Article  Google Scholar 

  • Carlson, K., Yang, S., & Kim, S. C. (2004). Antibiotic in the environment: Antibiotics in the Catche La Poudre River. Agronomy News, 24(3), 4–6.

    Google Scholar 

  • Cars, O., Högberg, L. D., Murray, M., Nordberg, O., Lundborg, C. S., So, A. D., et al. (2008). Meeting the challenge of a concerted global response is needed to tackle rising rates of antibiotic resistance. Without it, we risk returning to the pre-antibiotic era warn. British Medicine Journal, 337, 726–728.

    Google Scholar 

  • Choi, K. J., Kim, S. G., Kim, C. W., & Kim, S. H. (2007). Determination of antibiotic compounds in water by on-line SPE-LC/MSD. Chemosphere, 66, 977–984.

    Article  CAS  Google Scholar 

  • Choi, K., Kim, Y., Park, J., Park, C. K., Kim, M. Y., Kim, H. S., et al. (2008). Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Science of the Total Environment, 405, 120–128.

    Article  CAS  Google Scholar 

  • Golet, E. M., Alder, A. C., & Giger, W. (2002). Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environmental Science & Technology, 36(17), 3645–3651.

    Article  CAS  Google Scholar 

  • Gross, B., Montgomery-Brown, J., Naumann, A., & Reinhard, M. (2004). Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent-dominated river and wetland. Environmental Toxicology & Chemistry, 23(9), 2074–2083.

    Article  CAS  Google Scholar 

  • Ha, J. I., Hong, K. S., Song, S. W., Jung, S. C., Min, Y. S., & Shim, H. C. (2003). Survey of antimicrobial agents used in livestock and fishes. Korean Journal of Veterinary Public Health, 27, 205–217.

    Google Scholar 

  • Halling-Sorensen, B., Sengelov, G., & Tjornelund, J. (2002). Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria including selected tetracycline-resistant bacteria. Archives of Environmental Contamination & Toxicology, 42, 263–271.

    Article  CAS  Google Scholar 

  • Hamscher, G., Sczesny, S., Höper, H., & Nau, H. (2002). Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry, 74, 1509–1518.

    Article  CAS  Google Scholar 

  • Heim, S., Schwarzbauer, J., & Littke, R. (2004). Monitoring of waste deposit derived groundwater contamination with organic tracers. Environmental Chemistry Letters, 2, 21–25.

    Article  CAS  Google Scholar 

  • Johansson, N., & Mollby, R. (2006). Antibiotics in the environment. In B. E. Bengtsson, B. Bunnarsson, T. Wall, A. Wennmalm (Eds.), Environment and pharmaceuticals, poteket, A. B. (pp. 73–83). Stockholm: Stockholm County Council, Stockholm University.

    Google Scholar 

  • Kemper, N. (2008). Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 8, 1–13.

    Article  CAS  Google Scholar 

  • Kim, K.-R., Owens, G., Kwon, S.-I., So, K.-H., Lee, D.-B., & Ok, Y. S. (2010). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, and Soil Pollution. doi:10.1007/s11270-010-0412-2.

  • Kim, S. C., & Carlson, K. (2007a). Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS. Analytical and Bioanalytical Chemistry, 387, 1301–1315.

    Article  CAS  Google Scholar 

  • Kim, S. C., & Carlson, K. (2007b). Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environmental Science and Technology, 41(1), 50–57.

    Article  CAS  Google Scholar 

  • Kim, Y., Choi, K., Jung, J., Park, S., Kim, P.-G., & Park, J. (2007). Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International, 33, 370–375.

    Article  CAS  Google Scholar 

  • Kim, Y., Jung, J., Kim, M., Park, J., Boxall, A. B. A., & Choi, K. (2008). Prioritizing veterinary pharmaceuticals for aquatic environment in Korea. Environmental Toxicology and Pharmacology, 26, 167–176.

    Article  CAS  Google Scholar 

  • Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2008). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 26, 167–176.

    Google Scholar 

  • Kolpin, D., Furlong, E., Meyer, M., Thurman, E., Zaugg, S., Barber, L., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environmental Science & Technology, 36, 1202–1211.

    Article  CAS  Google Scholar 

  • Kong, W. D., Zhu, Y. G., Liang, Y. C., Zhang, J., Smith, F. A., & Yang, M. (2007). Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environmental Pollution, 147, 187–193.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (2008). Pharmaceuticals in the environment: Source, fate, effects and risks (3rd ed., pp. 75, 83, 85). New York: Springer-Verlag.

    Google Scholar 

  • Lin, A. Y. C., Plumlee, M. H., & Reinhard, M. (2006). Natural attenuation of pharmaceuticals and alkylphenol polyethoxylate metabolites during river transport: Photochemical and biological transformation. Environmental Toxicology and Chemistry, 25, 1458–1464.

    Article  CAS  Google Scholar 

  • Lin, A. Y. C., Yu, T. H., & Lin, C. F. (2008). Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere, 74, 131–141.

    Article  CAS  Google Scholar 

  • Montforts, M. H. M. M., Kalf, D. F., Vlaardingen, P. L. A. V., & Linders, J. B. H. J. (1999). The exposure assessment for veterinary medicinal products. The Science of the Total Environment, 225(1/2), 119–133.

    Article  CAS  Google Scholar 

  • NVRQS (2005). Veterinary antibiotics residue over the critical level in livestock products. Anyang: National Veterinary Research and Quarantine Services.

  • Ok, Y. S., Chang, S. X., & Feng, Y. (2007). Sensitivity to acidification of forest soils in two contrasting watersheds in the oil sands region of Alberta. Pedosphere, 17(6), 747–757.

    Article  CAS  Google Scholar 

  • Park, J., Kim, M. H., Choi, K., Kim, Y. H., & Kim, M. Y. (2007). Environmental risk assessment of pharmaceuticals: Model application for estimating pharmaceutical exposures in the Han River basin (pp. 2, 10). Korea: Korea Environment Institute.

    Google Scholar 

  • SAS (2004). SAS/Insight 9.1 user’s guide (Vol. 1). North Carolina: SAS Institute Inc.

    Google Scholar 

  • Seo, Y. H., Choi, J. K., Kim, S. K., Min, H. K., & Jung, Y. S. (2007). Prioritizing environmental risks of veterinary antibiotics based on the use and the potential to reach environment. Korean Journal of Soil Science and Fertilizer, 40(1), 43–50.

    CAS  Google Scholar 

  • Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soil: A review. Environmental science & Technology, 35, 3397–3406.

    Article  CAS  Google Scholar 

  • Turku, I., Sainio, T., & Paatero, E. (2007). Thermodynamics of tetracycline adsorption on silica. Environmental Chemistry Letters, 5, 225–228.

    Article  CAS  Google Scholar 

  • Vaclavik, E., Halling-Sorensen, B., & Ingerslev, F. (2004). Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil. Chemosphere, 56, 667–676.

    Article  CAS  Google Scholar 

  • VMD (2005). Sales of antimicrobial products authorized for use as veterinary medicines, antiprotozoals, antifungals, growth promoters and coccidiostats, in the UK in 2004. UK: Veterinary Medicines Directorate.

    Google Scholar 

  • Wise, R. (2002). Antimicrobial resistance: Priorities for action. Journal of Antimicrobial Chemotherapy, 49, 585–586.

    Article  CAS  Google Scholar 

  • Winckler, C., & Grafe, A. (2001). Use of veterinary drugs in intensive animal production-evidence for persistence of tetracycline in pig slurry. Journal of Soils Sediments, 1, 66–70.

    Article  CAS  Google Scholar 

  • Yang, J. E., Lee, W. Y., Ok, Y. S., & Skousen, J. (2009). Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea. Environmental Monitoring and Assessment, 157, 43–50.

    Article  CAS  Google Scholar 

  • Yoon, Y. M., Ok, Y. S., Kim, D. Y., & Kim, J. G. (2004). Agricultural recycling of the by-product concentrate of livestock wastewater treatment plant processed with VSEP RO and bio-ceramic SBR. Water Science and Technology, 49(5/6), 405–412.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Sik Ok or Seung-Oh Hur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ok, Y.S., Kim, SC., Kim, KR. et al. Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ Monit Assess 174, 693–701 (2011). https://doi.org/10.1007/s10661-010-1625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1625-y

Keywords

Navigation