Skip to main content

Advertisement

Log in

PM2.5 in the central part of Upper Silesia, Poland: concentrations, elemental composition, and mobility of components

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The paper discusses ambient concentrations of PM2.5 (ambient fine particles) and of 29 PM2.5-related elements in Zabrze and Katowice, Poland, in 2007. The elemental composition of PM2.5 was determined using energy dispersive X-ray fluorescence (EDXRF). The mobility (cumulative percentage of the water-soluble and exchangeable fractions of an element in its total concentration) of 18 PM2.5-related elements in Zabrze and Katowice was computed by using sequential extraction and EDXRF combined into a simple method. The samples were extracted twice: in deionized water and in ammonium acetate. In general, the mobility and the concentrations of the majority of the elements were the same in both cities. S, Cl, K, Ca, Zn, Br, Ba, and Pb in both cities, Ti and Se in Katowice, and Sr in Zabrze had the mobility greater than 70%. Mobility of typical crustal elements, Al, Si, and Ti, because of high proportion of their exchangeable fractions in PM, was from 40 to 66%. Mobility of Fe and Cu was lower than 30%. Probable sources of PM2.5 were determined by applying principal component analysis and multiple regression analysis and computing enrichment factors. Great part of PM2.5 (78% in Katowice and 36% in Zabrze) originated from combustion of fuels in domestic furnaces (fossil fuels, biomass and wastes, etc.) and liquid fuels in car engines. Other identified sources were: power plants, soil, and roads in Zabrze and in Katowice an industrial source, probably a non-ferrous smelter or/and a steelwork, and power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. There are numerous definitions of heavy metals in the available literature (IUPAC 2002). In the present work, the term heavy metal refers to “Element commonly used in industry and generically toxic to animals and to aerobic and anaerobic processes, but not every one is dense nor entirely metallic. Includes As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Zn” (Scott and Smith 1981, after IUPAC 2002).

  2. The methods of sampling, chemical analyses, sampling periods, and sampled dust fractions differ, so the results may not be comparable. Nevertheless, they may illustrate distribution of the levels of the ambient concentrations of elements in the world.

References

  • Alastuey, A., Querol, X., Rodríguez, S., Plana, F., Lopez-Soler, A., Ruiz, C., & Mantilla, E. (2004). Monitoring of atmospheric particulate matter around sources of secondary inorganic aerosol. Atmospheric Environment, 38, 4979–4992.

    Article  CAS  Google Scholar 

  • Al-Masri, M. S., Al-Kharfan, K., & Al-Shamali, K. (2006). Speciation of Pb, Cu and Zn determined by sequential extraction for identification of air pollution sources in Syria. Atmospheric Environment, 40(4), 753–761.

    Article  CAS  Google Scholar 

  • Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2005). Source apportionment of fine and coarse particulate matter in a sub-urban area at the western European coast. Atmospheric Environment, 39, 3127–3138.

    Article  CAS  Google Scholar 

  • Begun, B. A., Hopke, P. K., & Zhao, W. (2005). Source identification of fine particles in Washington, DC, by expanded factor analysis modeling. Environmental Science and Technology, 39, 1129–1137.

    Article  Google Scholar 

  • Bell, M. L., Samet, J. M., & Dominici, F. (2004). Time-series studies of particulate matter. Annual Review of Public Health, 25, 247–280.

    Article  Google Scholar 

  • Bertin, E. P. (1975). Principles and practice of X-ray spectrometric analysis. New York: Plenum Press.

    Book  Google Scholar 

  • Biegalski, S. R., & Hopke, P. K. (2004). Total potential source contribution function analysis of trace elements determined in aerosol samples collected near Lake Huron. Environmental Science and Technology, 38, 4276–4284.

    Article  CAS  Google Scholar 

  • Birmili, W. A., Allen, G., Bary, F., & Harrison, R. M. (2006). Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environmental Science and Technology, 40(4), 1144–1153.

    Article  CAS  Google Scholar 

  • Braga, C. F., Teixeira, E. C., Meira, L., Wiegand, F., Yoneama, M. L., & Dias, J. F. (2005). Elemental composition of PM10 and PM2.5 in urban environment in South Brazil. Atmospheric Environment, 39(10), 1801–1815.

    Article  CAS  Google Scholar 

  • Canepari, S., Pietrodangelo, A., Perrino, C., Astolfi, M. L., & Marzo, M. L. (2009). Enhancement of source traceability of atmospheric PM by elemental chemical fractionation. Atmospheric Environment, 43(31), 4754–4765.

    Article  CAS  Google Scholar 

  • Caussy, D., Gochfeld, M., Gurzau, E., Neagu, C., & Ruedel, H. (2003). Lessons from case studies of metals: investigating exposure, bioavailability, and risk. Ecotoxicology and Environmental Safety, 56(1), 45–51.

    Article  CAS  Google Scholar 

  • Chen, J. L., Lee, C.-T., Chang, S.-Y., & Chou, C. C. K. (2001). The elemental contents and fractal dimensions of PM2.5 in Taipei City. Aerosol and Air Quality Research, 1(1), 9–20.

    Google Scholar 

  • Chow, J. C. (1995). Measurement methods to determine compliance with ambient air quality standards for suspended particles. Journal of the Air & Waste Management Association, 45(5), 320–382.

    Article  CAS  Google Scholar 

  • Chueinta, W., Hopke, P. K., & Paatero, P. (2000). Investigation of sources of atmospheric aerosol urban and suburban residential areas in Thailand by positive matrix factorization. Atmospheric Environment, 34, 3319–3329.

    Article  CAS  Google Scholar 

  • Colin, J. L., Jaffrezo, J. L., & Gros, J. M. (1990). Solubility of major species in precipitation: factors of variation. Atmospheric Environment, 24(3), 537–544.

    Article  Google Scholar 

  • Cong, Z., Kang, S., Liu, X., & Wang, G. (2007). Elemental composition of aerosol in the Nam Co region, Tibetan Plateau, during summer monsoon season. Atmospheric Environment, 41(6), 1180–1187.

    Article  CAS  Google Scholar 

  • Costa, D. L., & Dreher, K. L. (1997). Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental Health Perspectives, 105(5), 1053–1060.

    Article  Google Scholar 

  • Dabek-Zlotorzynska, E., Kelly, M., Chen, H., & Chakrabarti, C. L. (2005). Application of capillary electrophoresis combined with a modified BCR sequential extraction for estimating of distribution of selected trace metals in PM2.5 fractions of urban airborne particulate matter. Chemosphere, 58(10), 1365–1376.

    Article  CAS  Google Scholar 

  • Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hegde, V., & Deutsch, W. A. (2001). The role of free radicals in the toxicity of airborne fine particulate matter. Chemical Research in Toxicology, 14(10), 1371–1377.

    Article  CAS  Google Scholar 

  • Desboeufs, K. V., Losno, R., & Colin, J. L. (2001). Factors influencing aerosol solubility during cloud processes. Atmospheric Environment, 35(20), 3529–3537.

    Article  CAS  Google Scholar 

  • Dutkiewicz, V. A., Qureshi, S., Husain, L., Schwab, J. J., & Demerjian, K. L. (2006). Elemental composition of PM2.5 aerosols in Queens, New York: evaluation of sources of fine-particle mass. Atmospheric Environment, 40(2), 347–359.

    Article  Google Scholar 

  • Ebert, P., & Baechmann, K. (1998). Solubility of lead in precipitation as a function of raindrop size. Atmospheric Environment, 32(4), 767–771.

    Article  CAS  Google Scholar 

  • EC. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.

  • EEA. (2009). Spatial assessment of PM10 and ozone concentrations in Europe (2005). Technical report. No 1/2009.

  • EMEP. (2009). Transboundary particulate matter in Europe. Status report 4/2009.

  • Feng, X. D., Dang, Z., Huang, W. L., & Yang, C. (2009). Chemical speciation of fine particle bound trace metals. International Journal of Environmental Science and Technology, 6(3), 337–346.

    CAS  Google Scholar 

  • Fernández Espinoza, A. J., Ternero, M., Barragán, F. J., & Jiménez, J. C. (2002). A chemical speciation of trace metals for fine urban particles. Atmospheric Environment, 36(5), 773–780.

    Article  Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental soil samples. Journal of Environmental Monitoring, 4(6), 823–857.

    Article  CAS  Google Scholar 

  • Finlayson-Pitts, B. J., & Pitts, J. N. (1986). Atmospheric chemistry: fundamentals and experimental techniques. New York: Wiley.

    Google Scholar 

  • Gao, Y., & Chen, D. (2006). Heterogeneous reactions of sulfur dioxide on dust. Science in China: Series B Chemistry, 49(3), 273–280.

    Article  CAS  Google Scholar 

  • Giusti, L., Yang, Y.-L., Hewitt, C. N., Hamilton-Taylor, J., & Davison, W. (1993). The solubility and partitioning of atmospherically derived trace metals in artificial and natural waters: a review. Atmospheric Environment, 27A(10), 1567–1578.

    CAS  Google Scholar 

  • Graney, J. R., Landis, M. S., & Norris, G. A. (2004). Concentrations and solubility of metals from indoor and personal exposure PM2.5 samples. Atmospheric Environment, 38(2), 237–247.

    Article  CAS  Google Scholar 

  • Heal, M. R., Hibbs, L. R., Agius, R. M., & Beverland, I. J. (2005). Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK. Atmospheric Environment, 39(8), 1417–1430.

    Article  CAS  Google Scholar 

  • Hinds, W. C. (1998). Aerosol technology. Properties, behaviour, and measurement of airborne particles (2nd ed.). New York: Wiley.

    Google Scholar 

  • Houthuijs, D., Breugelmans, O., Hoek, G., Vaskövi, Ė., Micháliková, E., Pastuszka, J. S., Jirik, V., Sachelarescu, S., Lolova, D., Meliefste, K., Uzunova, E., Marinescu, K., Volf, J., de Leeuw, F., van de Wiel, H., Flecher, T., Lebret, E., & Brunekreef, B. (2001). PM-10 and PM-2.5 concentrations in central and eastern Europe: results from the CESAR study. Atmospheric Environment, 35, 2757–2771.

    Article  CAS  Google Scholar 

  • IUPAC. (2002). Heavy metals—a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74, 793–807.

    Article  Google Scholar 

  • Jasan, R. C., Plá, R. R., Invernizzi, R., & Dos Santos, M. (2009). Characterization of atmospheric aerosol in Buenos Aires, Argentina. Journal of Radioanalytical and Nuclear Chemistry, 281(1), 101–105.

    Article  CAS  Google Scholar 

  • Jenkins, R. (1999). X-ray fluorescence spectrometry (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Jervis, R. E., Krishnan, S. S., Ko, M. M., Vela, L. D., Pringle, T. G., Chan, A. C., & Xing, L. (1995). Biological incinerator emissions of toxic inorganics, their residues and their availability. Analyst, 120(3), 651–657.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Joshi, U. M., & Balasubramanian, R. (2006). Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter: evaluation of bioavailability. Analytica Chimica Acta, 576(1), 23–30.

    Article  CAS  Google Scholar 

  • Koltay, E., Borbély-Kiss, I., Kertész, Z., Kiss, Á. Z., & Szabó, G. (2006). Assignment of Saharan dust sources to episodes in Hungarian atmosphere by PIXE and TOMS observations. Journal of Radioanalytical and Nuclear Chemistry, 267(2), 449–459.

    Article  CAS  Google Scholar 

  • Krzemińska-Flowers, M., Beml, H., & Górecka, H. (2006). Trace metals concentration in size-fractioned urban air particulate matter in Łódź, Poland. I. Seasonal and site fluctuations. Polish Journal of Environmental Studies, 15(5), 759–767.

    Google Scholar 

  • Kyotani, T., & Iwatsuki, M. (2002). Characterization of soluble and insoluble components in PM2.5 and PM10 fractions of airborne particulate matter in Kofu city, Japan. Atmospheric Environment, 36(4), 639–649.

    Article  CAS  Google Scholar 

  • Lammel, G., Rohrl, A., & Schreiber, H. (2002). Atmospheric lead and bromine in Germany. Post-abatement levels, variabilities and trends. Environmental Science and Pollution Research, 9, 397–404.

    Article  CAS  Google Scholar 

  • Laugh, G. C., Schauer, J. J., Park, J. S., Shafer, M. M., Deminter, J. T., & Weinstein, J. P. (2005). Emissions of metals associated with motor vehicle roadways. Environmental Science and Technology, 39, 826–836.

    Article  Google Scholar 

  • Li, W. Y., & Shao, L. Y. (2010). Direct observation of aerosol particles in aged agricultural biomass burning plumes impacting urban atmosphere. Atmospheric Chemistry and Physics Discussions, 10, 10589–10623.

    Article  Google Scholar 

  • López, L. M., Callén, M. S., Murillo, R., Garcia, T., Navarro, M. V., de la Cruz, M. T., & Mastral, A. M. (2005). Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environmental Research, 99(1), 58–67.

    Article  Google Scholar 

  • Magiera, T., Strzyszcz, Z., & Rachwal, M. (2007). Mapping particulate pollution loads using soil magnetometry in urban forests in the Upper Silesia Industrial Region, Poland. Forest Ecology and Management, 248(1–2), 36–42.

    Article  Google Scholar 

  • Marmur, A., Park, S.-K., Mulholland, J. A., Tolbert, P. E., & Russell, A. G. (2006). Source apportionment of PM2.5 in the southeastern United States using receptor and emissions-based models: conceptual differences and implications for time series health studies. Atmospheric Environment, 40(14), 2533–2551.

    Article  CAS  Google Scholar 

  • Monn, C. (2001). Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmospheric Environment, 35(1), 1–32.

    Article  CAS  Google Scholar 

  • Morata, D., Polvé, M., Valdés, A., Belmar, M., Dinator, M. I., Silva, M., Leiva, M. A., Aigouy, T., & Morales, J. R. (2008). Characterisation of aerosol from Santiago, Chile: an integrated PIXE-SEM-EDX study. Environmental Geology, 56(1), 81–95.

    Article  CAS  Google Scholar 

  • Pastuszka, J. S., Wawroś, A., Talik, E., & Paw, U. K. T. (2003). Optical and chemical characteristics of the atmospheric aerosol in four towns in southern Poland. Science of the Total Environment, 309(1–3), 237–251.

    Article  CAS  Google Scholar 

  • Pastuszka, J. S., Rogula-Kozłowska, W., & Zajusz-Zubek, E. (2010). Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes. Environmental Monitoring and Assessment, 168(1–4), 613–627.

    Article  CAS  Google Scholar 

  • Preciado, H. F., & Li, L. Y. (2006). Evaluation of metal loadings and bioavailability in air, water and soil along two highways of British Columbia, Canada. Water, Air, and Soil Pollution, 172, 81–108.

    Article  CAS  Google Scholar 

  • Puustinen, A., Hämeri, K., Pekkanen, J., Kulmala, M., de Hartog, J., Meliefste, K., ten Brink, H., Kos, G., Katsouyanni, K., Karakatsani, A., Kotronarou, A., Kavouras, I., Meddings, C., Thomas, S., Harrison, R., Ayres, J. G., van der Zee, S., & Hoek, G. (2007). Spatial variation of particle number and mass over four European cities. Atmospheric Environment, 41, 6622–6636.

    Article  CAS  Google Scholar 

  • Qin, Y., Kim, E., & Hopke, P. K. (2006). The concentrations and sources of PM2.5 in metropolitan New York City. Atmospheric Environment, 40(2), 312–332.

    Article  Google Scholar 

  • Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la Rosa, J., Sánchez de la Campa, A., Artíñano, B., Salvador, P., García Dos Santos, S., Fernández-Patier, R., Moreno-Grau, S., Negral, L., Minguillón, M. C., Monfort, E., Gil, J. I., Inza, A., Ortega, L. A., Santamaria, J. M., & Zabalza, J. (2007). Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment, 41(34), 7219–7231.

    Article  CAS  Google Scholar 

  • Quiterio, S. L., Sousa, C. R., Arbilla, G., & Escaleira, V. (2005). Evaluation of levels, sources and distribution of airborne trace metals in seven districts of the Baixada Fluminense, Rio de Janeiro, Brazil. Atmospheric Environment, 39(19), 3503–3512.

    Article  CAS  Google Scholar 

  • Qureshi, S., Dutkiewicz, V. A., Khan, A. R., Swami, K., Yang, K. X., Husain, L., Schwab, J. J., & Demerjian, K. L. (2006). Elemental composition of PM2.5 aerosols in Queens, New York: solubility and temporal trends. Atmospheric Environment, 40(2), 238–251.

    Article  Google Scholar 

  • Rajšić, S., Mijić, Z., Tasić, M., Radenković, M., & Joksić, J. (2008). Evaluation of the levels and sources of trace elements in urban particulate matter. Environmental Chemistry Letters, 6(2), 95–100.

    Article  Google Scholar 

  • Richter, P., Grinõ, P., Ahumada, I., & Giordano, A. (2007). Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile. Atmospheric Environment, 41(32), 6729–6738.

    Article  CAS  Google Scholar 

  • Ross, H. B. (1985). An atmospheric selenium budget for the region 30°N to 90°N. Tellus, 37B, 78–90.

    Article  CAS  Google Scholar 

  • Schroeder, W. H., Dodson, M., Kane, D. M., & Johnson, N. D. (1987). Toxic trace elements associated with airborne particulate matter: a review. Journal of the Air Pollution Control Association, 37(11), 1267–1285.

    CAS  Google Scholar 

  • Scott, J. S., & Smith, P. G. (1981). Dictionary of waste and water treatment. London: Butterworths.

    Google Scholar 

  • Seinfeld, J. H. (1986). Air pollution: physical and chemical fundamentals (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Sillanpää M. (2006). Chemical and source characterization of size-segregated urban air particulate matter. Academic Dissertation. Finnish Meteorological Institute Contributions No. 58, Helsinki.

  • Somerville, M. C., Mukerjee, S., & Fox, D. L. (1996). Estimating the wind direction of maximum air pollutant concentration. Environmetrics, 7, 231–243.

    Article  Google Scholar 

  • Sternbeck, J., Sjödin, Å., & Andréasson, K. (2002). Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmospheric Environment, 36(30), 4735–4744.

    Article  CAS  Google Scholar 

  • Sun, G. B., Crissman, K., Norwood, J., Richards, J., Slade, R., & Hatch, G. E. (2001). Oxidative interactions of synthetic lung epithelial lining fluid with metal-containing particulate matter. American Journal of Physiology - Lung Cellular and Molecular Physiology, 281(4), 807–815.

    Google Scholar 

  • Suzuki, K. (2006). Characterisation of airborne particulates and associated trace metals deposited on tree bark by ICP–OES, ICP–MS, SEM–EDX and laser ablation ICP–MS. Atmospheric Environment, 40(14), 2626–2634.

    Article  CAS  Google Scholar 

  • Thurston, G. D., & Spengler, J. D. (1985). A multivariantive assessment of meteorological influences on inhalable particle source impacts. Journal of Climate and Apllied Meteorology, 24, 1245–1256.

    Article  CAS  Google Scholar 

  • US EPA. (1999). Compendium of methods for the determination of inorganic compounds in ambient air. Compendium method IO-3.3: determination of metals in ambient particulate matter using X-ray fluorescence (XRF) spectroscopy, Cincinnati, June.

  • Valavanidis, A., Salika, A., & Theodoropoulou, A. (2000). Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions. Atmospheric Environment, 34(15), 2379–2386.

    Article  CAS  Google Scholar 

  • Vallius, M., Janssen, N. A. H., Heinrich, J., Hoek, G., Ruuskanen, J., Cyrys, J., Van Grieken, R., de Hartog, J. J., Kreyling, W. G., & Pekkanen, J. (2005). Sources and elemental composition of PM2,5 in three European cities. Science of the Total Environment, 337(1–3), 147–162.

    Article  CAS  Google Scholar 

  • Van Maanen, J. M., Borm, P. J. A., Knaapen, A., van Herwijnen, M., Schilderman, P. A. E. L., Smith, K. R., Aust, A. E., Tomatis, M., & Fubini, B. (1999). In vitro effects of coal fly ashes: hydroxyl radical generation, iron release, and DNA damage and toxicity in rat lung epithelial cells. Inhalation Toxicology, 11(12), 1123–1141.

    Article  Google Scholar 

  • Vedal, S., Brauer, M., White, R., & Petkau, J. (2003). Air pollution and daily mortality in a city with low levels of pollution. Environmental Health Perspectives, 111(1), 45–51.

    Article  Google Scholar 

  • Viana, M., Maenhaut, W., Chi, X., Querol, X., & Alastuey, A. (2007). Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: implications for EU air pollution policies. Atmospheric Environment, 41(2), 315–326.

    Article  CAS  Google Scholar 

  • Voutsa, D., & Samara, C. (2002). Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmospheric Environment, 36(22), 3583–3590.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

  • WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005, summary of risk assessment.

  • Yadav, S., & Rajamani, V. (2006). Air quality and trace metal chemistry of different size fractions of aerosols in N–NW India—implications for source diversity. Atmospheric Environment, 40(4), 698–712.

    Article  CAS  Google Scholar 

  • Zhang, X., Zhuang, G., Guo, J., Yin, K., & Zhang, P. (2007). Characterization of aerosol over the Northern South China Sea during two cruises in 2003. Atmospheric Environment, 41(36), 7821–7836.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was partially financed from the funds of the Ministry of Science and Higher Education granted to the Institute of Environmental Engineering PAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Rogula-Kozłowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogula-Kozłowska, W., Błaszczak, B., Szopa, S. et al. PM2.5 in the central part of Upper Silesia, Poland: concentrations, elemental composition, and mobility of components. Environ Monit Assess 185, 581–601 (2013). https://doi.org/10.1007/s10661-012-2577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2577-1

Keywords

Navigation